RESUMEN
Research on bioactive compounds is essential to improve human health; promote adequate nutrition; drive innovation in the food, agricultural and biotechnology industries; and contribute to the preservation of the environment. The genus Diplotaxis (Brassicaceae) currently comprises around forty species, some of which are edible, particularly Diplotaxis tenuifolia (wild rocket), Diplotaxis erucoides (wall rocket), Diplotaxis muralis (annual wall rocket), Diplotaxis viminea (perennial wall rocket), and Diplotaxis simplex. The leaves of these species are rich in fiber and essential minerals, such as calcium, iron, potassium, and magnesium. Thirteen species have been characterized for their phenolic compounds, predominantly kaempferol, quercetin, and isorhamnetin glycosides. Furthermore, glucosinolate compounds were identified in nineteen species of the genus Diplotaxis. Many of the phytochemicals identified in Diplotaxis spp. demonstrated interesting biological activities, such as antioxidant, anti-inflammatory, antibacterial, hypoglycemic and hypolipidemic effects, as well as cytotoxicity and antiproliferative properties. This article provides a review of the phytochemistry of the Diplotaxis genus, highlighting its importance in food, its biological properties, potential pharmacological applications, and the dearth of research on many of these plants.
Asunto(s)
Brassicaceae , Fitoquímicos , Fitoquímicos/química , Fitoquímicos/farmacología , Humanos , Brassicaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Valor Nutritivo , Hojas de la Planta/químicaRESUMEN
The treatment of dermatophytoses, the most common human fungal infections, requires new alternatives. The aim of this study was to determine the antidermatophytic activity of the aqueous Azorean Black Tea extract (ABT), together with an approach to the mechanisms of action. The phytochemical analysis of ABT extract was performed by HPLC. The dermatophytes susceptibility was assessed using a broth microdilution assay; potential synergies with terbinafine and griseofulvin were evaluated by the checkerboard assay. The mechanism of action was appraised by the quantification of the fungal cell wall chitin and ß-1,3-glucan, and by membrane ergosterol. The presence of ultrastructural modifications was studied by Transmission Electron Microscopy (TEM). The ABT extract contained organic and phenolic acids, flavonoids, theaflavins and alkaloids. It showed an antidermatophytic effect, with MIC values of 250 µg/mL for Trichophyton mentagrophytes, 125 µg/mL for Trichophyton rubrum and 500 µg/mL for Microsporum canis; at these concentrations, the extract was fungicidal. An additive effect of ABT in association to terbinafine on these three dermatophytes was observed. The ABT extract caused a significant reduction in ß-1,3-glucan content, indicating the synthesis of this cell wall component as a possible target. The present study identifies the antidermatophytic activity of the ABT and highlights its potential to improve the effectiveness of conventional topical treatment currently used for the management of skin or mucosal fungal infections.
Asunto(s)
Arthrodermataceae , Camellia sinensis , Fungicidas Industriales , Micosis , Humanos , Antifúngicos/química , Terbinafina/farmacología , Té , Pruebas de Sensibilidad Microbiana , Fungicidas Industriales/farmacología , Extractos Vegetales/farmacología , Micosis/tratamiento farmacológico , TrichophytonRESUMEN
Overexpression of melanin contributes to darkening of plant and fruit tissues and skin hyperpigmentation, leading to melasma or age spots. Although melanin biosynthesis is complex and involves several steps, a single enzyme known as tyrosinase is key to regulating this process. The melanogenesis pathway is initiated by oxidation of the starting material l-tyrosine (or l-DOPA) to dopaquinone by tyrosinase; the resulting quinone then serves as a substrate for subsequent steps that eventually lead to production of melanin. Medicinal plants are considered a good source of tyrosinase inhibitors. This study investigated the tyrosinase inhibitory activity of A. mollis leaf extracts and their phytochemicals. Significant activity was verified in the ethanol extract -EEt (IC50 = 1.21 µg/mL). Additionally, a kinetic study showed that this tyrosinase inhibition occurs by DIBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and verbascoside contribution through a non-competitive reaction mechanism. A synergistic effect on tyrosinase inhibition was observed in the binary combination of the compounds. In conclusion, both EEt and a mixture of two of its phytochemicals can be effective tyrosinase inhibitors and can be used as a bleaching agent for cosmetic formulations in the future.
Asunto(s)
Acanthaceae , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Melaninas/metabolismo , Extractos Vegetales/farmacología , Fitoquímicos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/químicaRESUMEN
Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting elderly people worldwide. Currently, there are no effective treatments for AD able to prevent disease progression, highlighting the urgency of finding new therapeutic strategies to stop or delay this pathology. Several plants exhibit potential as source of safe and multi-target new therapeutic molecules for AD treatment. Meanwhile, Eucalyptus globulus extracts revealed important pharmacological activities, namely antioxidant and anti-inflammatory properties, which can contribute to the reported neuroprotective effects. This review summarizes the chemical composition of essential oil (EO) and phenolic extracts obtained from Eucalyptus globulus leaves, disclosing major compounds and their effects on AD-relevant pathological features, including deposition of amyloid-ß (Aß) in senile plaques and hyperphosphorylated tau in neurofibrillary tangles (NFTs), abnormalities in GABAergic, cholinergic and glutamatergic neurotransmission, inflammation, and oxidative stress. In general, 1,8-cineole is the major compound identified in EO, and ellagic acid, quercetin, and rutin were described as main compounds in phenolic extracts from Eucalyptus globulus leaves. EO and phenolic extracts, and especially their major compounds, were found to prevent several pathological cellular processes and to improve cognitive function in AD animal models. Therefore, Eucalyptus globulus leaves are a relevant source of biological active and safe molecules that could be used as raw material for nutraceuticals and plant-based medicinal products useful for AD prevention and treatment.
Asunto(s)
Enfermedad de Alzheimer , Aceites Volátiles , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Biomasa , Bosques , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Fenoles/farmacologíaRESUMEN
Dyslipidemias are one of the risk factors for cardiovascular diseases, the leading cause of death and hospitalization worldwide. One way to control cholesterol levels is to control the exogenous cholesterol intake in the body. Natural polyphenolic compounds, namely theaflavins from plant extracts such as black tea, showed the ability to inhibit the formation of the micellar structure, essential for the absorption of cholesterol in the intestine. There are several methodologies to determine this effect, many of which are expensive and time-consuming. Due to these facts, the main purposes of this work were to optimize an inexpensive colorimetric method to study, in vitro, the micellar solubility of cholesterol and applied it to plant extracts. In this work, Cymbopogon citratus leaf extracts, its phenolic fractions, and flavonoids were evaluated. The non-delipidified infusion (CcI) obtained a maximum percentage of micelle destruction of 59.22% for a concentration of 50 µg/mL and the delipidified infusion (CcdI) obtained a maximum percentage of micelle destruction of 58.01% for a concentration of 200 µg/mL. In the case of the fraction of phenolic acids (CcPAs), 23.85% of maximum micellar destruction was recorded for the concentration of 100 µg/mL, while for the fraction of flavonoids (CcF), the micellar destruction was 92.74% at 1 µg/mL, and for the tannin fraction (CcT) of 99.45% at 25 µg/mL. Luteolin presented a percentage of micelle destruction of 94.83% in the concentration of 1 ng/mL, followed by luteolin-7-O-glucoside with 93.71% and luteo-lin-6-C-glucoside with 91.26% at the concentrations of 25 ng/mL and 50 ng/mL, respectively. These results suggest the capability of polyphenols from Cymbopogon citratus to prevent the cholesterol absorption in the gut by micellar destruction, and its contribution for cholesterol-lowering activity.
Asunto(s)
Cymbopogon , Cymbopogon/química , Micelas , Solubilidad , Extractos Vegetales/farmacología , Fenoles/farmacología , Flavonoides/farmacología , Flavonoides/química , Colesterol , Hojas de la PlantaRESUMEN
We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. METHODS: Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT-) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. RESULTS: Endothelial function was impaired in diabetic GK rats (47% (GK - PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK - PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products' levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. CONCLUSIONS: Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.
Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Luteolina/administración & dosificación , Tejido Adiposo/efectos de los fármacos , Animales , Proteínas Portadoras/metabolismo , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Esquema de Medicación , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Luteolina/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Tirosina/análogos & derivados , Tirosina/metabolismoRESUMEN
Cymbopogon citratus DC (Stapf.) is a perennial grass and it is distributed around the world. It is used as a condiment for food and beverage flavouring in the form of infusions and decoctions of its dried leaves. Our previous studies have shown antioxidant, anti-inflammatory and gastroprotective activities for the infusion and its phenolic fractions. The aim of the present work was to develop oral dosage forms from a Cymbopogon citratus extract to be used as a functional food with antioxidant properties. Initially, an essential oil-free infusion was prepared, lyophilized and characterized by HPLC-PDA. Total phenols were quantified with the Folin-Ciocalteu method and the antioxidant activity was assessed by DPPH assay. Gelatine capsules containing the extract with different excipients, selected after DSC and IR trials, were prepared. A formulation exhibiting better antioxidant behaviour in a gastric environment was attained. These results suggest that the proposed formulation for this extract could be a valuable antioxidant product and, consequently, make an important contribution to "preventing" and minimizing diseases related to oxidative stress conditions.
Asunto(s)
Antioxidantes/química , Cymbopogon/química , Composición de Medicamentos/métodos , Extractos Vegetales/química , Hojas de la Planta/química , Administración Oral , Cápsulas , Cromatografía Líquida de Alta Presión/métodos , Excipientes/química , Flavonoides/análisis , Gelatina/química , Polifenoles/análisis , Taninos/análisisRESUMEN
Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.
Asunto(s)
Fenoles/aislamiento & purificación , Fenoles/farmacología , Algas Marinas/metabolismo , Animales , Humanos , Estructura Molecular , Fenoles/química , Relación Estructura-ActividadRESUMEN
Luteolin is a dietary flavonoid with medicinal properties including antioxidant, antimicrobial, anticancer, antiallergic, and anti-inflammatory. However, the effect of luteolin on liver X receptors (LXRs), oxysterol sensors that regulate cholesterol homeostasis, lipogenesis, and inflammation, has yet to be studied. To unveil the potential of luteolin as an LXRα/ß modulator, we investigated by real-time RT-PCR the expression of LXR-target genes, namely, sterol regulatory element binding protein 1c (SREBP-1c) in hepatocytes and ATP-binding cassette transporter (ABC)A1 in macrophages. The lipid content of hepatocytes was evaluated by Oil Red staining. The results demonstrated, for the first time, that luteolin abrogated the LXRα/ß agonist-induced LXRα/ß transcriptional activity and, consequently, inhibited SREBP-1c expression, lipid accumulation, and ABCA1 expression. Therefore, luteolin could abrogate hypertriglyceridemia associated with LXR activation, thus presenting putative therapeutic effects in diseases associated with deregulated lipid metabolism, such as hepatic steatosis, cardiovascular diseases, and diabetes.
Asunto(s)
Flavonas/farmacología , Receptores X del Hígado/antagonistas & inhibidores , Luteolina/farmacología , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Metabolismo de los Lípidos , Hígado/efectos de los fármacos , Luteolina/química , Estructura Molecular , Reacción en Cadena de la Polimerasa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/efectos de los fármacosRESUMEN
BACKGROUND: Cymbopogon citratus (Cc), commonly known as lemongrass, is a very important crop worldwide, being grown in tropical countries. It is widely used in the food, pharmaceutical, cosmetic and perfumery industries for its essential oil. Cc aqueous extracts are also used in traditional medicine. They contain high levels of polyphenols, which are known for their antioxidant and anti-inflammatory properties. Hydrodistillation of lemongrass essential oil produces an aqueous waste (CcHD) which is discarded. Therefore a comparative study between CcHD and Cc infusion (CcI) was performed to characterize its phytochemical profile and to research its antioxidant and anti-inflammatory potential. RESULTS: HPLC-PDA/ESI-MS(n) analysis showed that CcI and CcHD have similar phenolic profiles, with CcHD presenting a higher amount of polyphenols. Additionally, both CcI and CcHD showed antioxidant activity against DPPH (EC50 of 41.72 ± 0.05 and 42.29 ± 0.05 µg mL(-1) respectively) and strong anti-inflammatory properties, by reducing NO production and iNOS expression in macrophages and through their NO-scavenging activity, in a dose-dependent manner. Furthermore, no cytotoxicity was observed. CONCLUSION: The data of this study encourage considering the aqueous solution from Cc leaf hydrodistillation as a source of bioactive compounds, which may add great industrial value to this crop.
Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cymbopogon/química , Residuos Industriales , Extractos Vegetales/farmacología , Polifenoles/farmacología , Antiinflamatorios/análisis , Antioxidantes/análisis , Medicina Tradicional , Fenoles/análisis , Fenoles/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Polifenoles/análisisRESUMEN
The infusion of Santolina impressa, an endemic Portuguese plant, is traditionally used to treat various infections and disorders. This study aimed to assess its chemical profile by HPLC-DAD-ESI-MSn and validate its anti-inflammatory potential. In addition, the antioxidant capacity and effects on wound healing, lipogenesis, melanogenesis, and cellular senescence, all processes in which a dysregulated inflammatory response plays a pivotal role, were unveiled. The anti-inflammatory potential was assessed in lipopolysaccharide (LPS)-stimulated macrophages, cell migration was determined using a scratch wound assay, lipogenesis was assessed on T0901317-stimulated keratinocytes and melanogenesis on 3-isobutyl-1-methylxanthine (IBMX)-activated melanocytes. Etoposide was used to induce senescence in fibroblasts. Our results point out a chemical composition predominantly characterized by dicaffeoylquinic acids and low amounts of flavonols. Regarding the infusion's bioactive potential, an anti-inflammatory effect was evident through a decrease in nitric oxide production and inducible nitric oxide synthase and pro-interleukin-1ß protein levels. Moreover, a decrease in fibroblast migration was observed, as well as an inhibition in both intracellular lipid accumulation and melanogenesis. Furthermore, the infusion decreased senescence-associated ß-galactosidase activity, γH2AX nuclear accumulation and both p53 and p21 protein levels. Overall, this study confirms the traditional uses of S. impressa and ascribes additional properties of interest in the pharmaceutical and dermocosmetics industries.
RESUMEN
Current therapies for Alzheimer's disease (AD) do not delay its progression, therefore, novel disease-modifying strategies are urgently needed. Recently, an increasing number of compounds from natural origin with protective properties against AD have been identified. Mixtures or extracts obtained from natural products containing several bioactive compounds have multifunctional properties and have drawn the attention because multiple AD pathways can be simultaneously modulated. This study evaluated the in vitro and in vivo effect of the essential oil (EO) obtained from the hydrodistillation of Eucalyptus globulus leaves, and an extract obtained from the hydrodistillation residual water (HRW). It was observed that EO and HRW have anti-inflammatory effect in brain immune cells modeling AD, namely lipopolysaccharide (LPS)- and amyloid-beta (Aß)-stimulated microglia. In cell models that mimic AD-related neuronal dysfunction, HRW attenuated Aß secretion and Aß-induced mitochondrial dysfunction. Since the HRW's major components did not cross the blood-brain barrier, both EO and HRW were administered to the APP/PS1 transgenic AD mouse model by an intranasal route, which reduced cortical and hippocampal Aß levels, and to rescue memory deficits and anxiety-like behaviors. Finally, HRW and EO were found to regulate cholesterol levels in aged mice after intranasal administration, suggesting that these extracts can reduce hypercholesterolemia and avoid risk for AD development. Overall, findings support a protective role of E. globulus extracts against ADlike pathology and cognitive impairment highlighting the underlying mechanisms. These extracts obtained from underused forest biomass could be useful to develop nutraceutical supplements helpful to avoid AD risk and to prevent its progression.
RESUMEN
Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.
Asunto(s)
Arándanos Azules (Planta) , Diabetes Mellitus Tipo 2 , Hígado Graso , Estado Prediabético , Ratas , Masculino , Animales , Ratones , Estado Prediabético/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Ratas Wistar , Hígado/metabolismo , Hígado Graso/metabolismo , Obesidad/metabolismo , Suplementos Dietéticos , Glucosa/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos/farmacología , Autofagia , Ratones Endogámicos C57BLRESUMEN
Topical formulations of Acanthus mollis L. leaf and the optimization of the release of their active compounds and their topical bioavailability were investigated for the first time. In vitro, the release of active compounds from three formulations-an oil-in-water cream and two hydrogels (Carbopol 940 and Pluronic F-127)-was determined using Franz diffusion cells. Detection and quantification of the compounds was performed via high-performance liquid chromatography with a photodiode array (HPLC-PDA). DIBOA, a bioactive compound of this medicinal plant, exhibited release kinetics of the Weibull model for the Carbopol and Pluronic F-127 formulation, identifying it as a potential active agent to optimize the topical distribution of the formulations. The implications extend to applications in inflammation treatment and tyrosinase inhibition, suggesting that it can make a significant contribution to addressing skin conditions, including melanoma and various inflammatory diseases.
RESUMEN
Fragaria vesca L. (wild strawberry) is traditionally used for its anti-inflammatory activity and for gastrointestinal, cardiovascular and urinary disorders. A previous study with the rat aorta showed that its leaves extract elicits endothelium-dependent vasorelaxation. Our aim was to investigate the clinical application of Fragaria vesca in vascular disease, by assessing the vascular effects of an infusion and hydroalcoholic extract in internal thoracic arteries from patients with coronary artery disease. The extracts elicited no effects on basal vascular tone and did not induce any vasorelaxation. At low concentration (0.02 mg/mL), the infusion potentiated the noradrenaline-induced contraction, while the other concentrations did not elicit significant changes in efficacy or potency. Differences between our findings and the previous report on rat aorta may result from methodological differences, e.g. vascular bed, method of extraction and extract composition. The clinical applicability of extracts of Fragaria vesca in patients with cardiovascular disease remains to be fully validated.
RESUMEN
Chritmum maritimum, sea fennel, is a facultative halophyte used in salads, soups, and sauces, as well as used to prepare medicinal juices and aqueous extracts (AE) to treat several ailments. Its essential oil (EO) is used as a spice and aromatizing. In this work, the nutritional (crude protein, fiber, lipids, and ashes content) and HPLC-PDA phenolic profiles were determined. Furthermore, the antioxidant potential of the infusion and of the decoction, as well as the antibacterial activity of both, the AE and EO, were assessed against food-contaminating bacteria. The composition of the EO was also established. Sea fennel exhibited considerable fiber (34.3 ± 1.92%) and mineral content (23.6 ± 4.8%). AE contains chlorogenic acid as the major phenolic compound, 49.7 ± 0.8 mg/g in the infusion dry extract and (26.8 ± 0.9 mg/g in the decoction dry extract). EO contains high amounts of monoterpene hydrocarbons, namely γ-terpinene and sabinene. In regards to the antioxidant activity, IC50 values for the infusion and decoction were, respectively: 36.5 ± 1.4 µg/mL and 44.7 ± 4.4 µg/mL in the DPPH assay; 37.3 ± 2.6 µg/mL and 38.4 ± 1.8 µg/mL, in the ABTS assay. EO is particularly active against Bacillus cereus and Lactobacillus plantarum. The results support the use of sea fennel AE and EO as a potential alternative preservative ingredient for feeds, foods, pharmaceutical, and cosmetic industries, due to the antioxidant activity of infusion and decoction, and antibacterial properties of essential oil.
RESUMEN
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1ß protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1ß. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy.
Asunto(s)
Lamiaceae , Aceites Volátiles , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Lamiaceae/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Antioxidantes/químicaRESUMEN
Inflammation plays a pivotal role in the resolution of infection or tissue damage. In addition, inflammation is considered a hallmark of aging, which in turn compromises wound healing. Thymbra capitata is an aromatic plant, whose infusion is traditionally used as an anti-inflammatory and wound-healing agent. In this study, a T. capitata infusion was prepared and characterized by HPLC-PDA-ESI-MSn and its safety profile determined by the resazurin metabolic assay. The anti-inflammatory potential was revealed in lipopolysaccharide (LPS)-stimulated macrophages by assessing nitric oxide (NO) release and levels of inducible nitric oxide synthase (iNOS) and the interleukin-1ß pro-form (pro-IL-1ß). Wound-healing capacity was determined using the scratch assay. The activity of senescence-associated ß-galactosidase was used to unveil the anti-senescent potential, along with the nuclear accumulation of yH2AX and p21 levels. The antiradical potential was assessed by DPPH and ABTS scavenging assays. The infusion contains predominantly rosmarinic acid and salvianolic acids. The extract decreased NO, iNOS, and pro-IL-1ß levels. Interestingly, the extract promoted wound healing and decreased ß-galactosidase activity, as well as yH2AX and p21 levels. The present work highlights strong antiradical, anti-inflammatory, and wound healing capacities, corroborating the traditional uses ascribed to this plant. We have described, for the first time for this extract, anti-senescent properties.
RESUMEN
Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, ß-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.
RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The Acanthus genus belongs to the Acanthaceae family, and its species are distributed in all continents, mainly in tropical and subtropical regions. Several traditional applications are referred to, but few scientific studies validate them. Despite this, studies in animal models corroborate some of its uses in folk medicine, such as anticancer, antidiabetic, anti-inflammatory, and antinociceptive, which encourages the research on plants of this genus. AIM OF THE REVIEW: To our knowledge, this document is the first comprehensive review study that provides information on the geographic distribution, botanical characteristics, ethnomedicinal uses, phytochemicals, and pharmacological activities of some Acanthus species to understand the correlation between traditional uses, phytochemical, and pharmacological activities, providing perspectives for future studies. RESULTS: In traditional medicine, Acanthus species are mainly used for diseases of respiratory, nervous and reproductive system, gastrointestinal and urinary tract, and skin illness. The most used species are A. montanus, A. ilicifolius, and A. ebracteatus. Chemical compounds (125) from different chemical classes were isolated and identified in seven species, mainly from A. ilicifolius, about 80, followed by A. ebracteatus and A. montanus, appearing with a slightly lower number with fewer phytochemical profile studies. Isolated phytoconstituents have been mainly alkaloids, phenylpropanoid glycosides, and phenylethanoids. In addition, aliphatic glycosides, flavonoids, lignan glycosides, megastigmane derivatives, triterpenoids, steroids, fatty acids, alcohols, hydroxybenzoic acids, simple phenols were also cited. Scientific studies from Acanthus species extracts and their phytoconstituents support their ethnomedical uses. Antimicrobial activity that is the most studied, followed by the antioxidant, anti-inflammatory, and anticancer properties, underlie many Acanthus species activities. A. dioscoridis, A. ebracteatus, A. hirsutus, A. ilicifolius, A. mollis, A. montanus, and A. polystachyus have studies on these activities, A. ilicifolius being the one with the most publications. Most studies were essentially performed in vitro. However, the anticancer, antidiabetic, anti-inflammatory and antinociceptive properties have been studied in vivo. CONCLUSION: Acanthus species have remarkable phytoconstituents with different biological activities, such as antioxidant, antimicrobial, anti-inflammatory, antinociceptive, hepatoprotective, and leishmanicidal, supporting traditional uses of some species. However, many others remain unexplored. Future studies should focus on these species, especially pharmacological properties, toxicity, and action mechanisms. This review provides a comprehensive report on Acanthus genus plants, evidencing their therapeutic potential and prospects for discovering new safe and effective drugs from Acanthus species.