Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38876107

RESUMEN

Vector-borne diseases are a leading cause of death worldwide and pose a substantial unmet medical need. Pathogens binding to host extracellular proteins (the "exoproteome") represents a crucial interface in the etiology of vector-borne disease. Here, we used bacterial selection to elucidate host-microbe interactions in high throughput (BASEHIT)-a technique enabling interrogation of microbial interactions with 3,324 human exoproteins-to profile the interactomes of 82 human-pathogen samples, including 30 strains of arthropod-borne pathogens and 8 strains of related non-vector-borne pathogens. The resulting atlas revealed 1,303 putative interactions, including hundreds of pairings with potential roles in pathogenesis, including cell invasion, tissue colonization, immune evasion, and host sensing. Subsequent functional investigations uncovered that Lyme disease spirochetes recognize epidermal growth factor as an environmental cue of transcriptional regulation and that conserved interactions between intracellular pathogens and thioredoxins facilitate cell invasion. In summary, this interactome atlas provides molecular-level insights into microbial pathogenesis and reveals potential host-directed targets for next-generation therapeutics.

2.
BMC Genomics ; 24(1): 401, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460975

RESUMEN

BACKGROUND: Bacteria of the Borrelia burgdorferi sensu lato (s.l.) complex can cause Lyme borreliosis. Different B. burgdorferi s.l. genospecies vary in their host and vector associations and human pathogenicity but the genetic basis for these adaptations is unresolved and requires completed and reliable genomes for comparative analyses. The de novo assembly of a complete Borrelia genome is challenging due to the high levels of complexity, represented by a high number of circular and linear plasmids that are dynamic, showing mosaic structure and sequence homology. Previous work demonstrated that even advanced approaches, such as a combination of short-read and long-read data, might lead to incomplete plasmid reconstruction. Here, using recently developed high-fidelity (HiFi) PacBio sequencing, we explored strategies to obtain gap-free, complete and high quality Borrelia genome assemblies. Optimizing genome assembly, quality control and refinement steps, we critically appraised existing techniques to create a workflow that lead to improved genome reconstruction. RESULTS: Despite the latest available technologies, stand-alone sequencing and assembly methods are insufficient for the generation of complete and high quality Borrelia genome assemblies. We developed a workflow pipeline for the de novo genome assembly for Borrelia using several types of sequence data and incorporating multiple assemblers to recover the complete genome including both circular and linear plasmid sequences. CONCLUSION: Our study demonstrates that, with HiFi data and an ensemble reconstruction pipeline with refinement steps, chromosomal and plasmid sequences can be fully resolved, even for complex genomes such as Borrelia. The presented pipeline may be of interest for the assembly of further complex microbial genomes.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Enfermedad de Lyme , Humanos , Borrelia/genética , Genoma Bacteriano , Filogenia , Borrelia burgdorferi/genética , Enfermedad de Lyme/microbiología , Grupo Borrelia Burgdorferi/genética
3.
Mol Ecol ; 32(4): 786-799, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461660

RESUMEN

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Asunto(s)
Distribución Animal , Vectores Arácnidos , Borrelia , Ixodes , Enfermedad de Lyme , Animales , Humanos , Asia , Borrelia/genética , Borrelia/fisiología , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiología , Ixodes/microbiología , Ixodes/fisiología , Enfermedad de Lyme/microbiología , Enfermedad de Lyme/transmisión , Europa (Continente) , Vectores Arácnidos/microbiología , Vectores Arácnidos/fisiología , Distribución Animal/fisiología , Adaptación Biológica/genética , Adaptación Biológica/fisiología
4.
Infection ; 51(1): 239-245, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35596057

RESUMEN

PURPOSE: Omicron is rapidly spreading as a new SARS-CoV-2 variant of concern (VOC). The question whether this new variant has an impact on SARS-CoV-2 rapid antigen test (RAT) performance is of utmost importance. To obtain an initial estimate regarding differences of RATs in detecting omicron and delta, seven commonly used SARS-CoV-2 RATs from different manufacturers were analysed using cell culture supernatants and clinical specimens. METHODS: For this purpose, cell culture-expanded omicron and delta preparations were serially diluted in Dulbecco's modified Eagle's Medium (DMEM) and the Limit of Detection (LoD) for both VOCs was determined. Additionally, clinical specimens stored in viral transport media or saline (n = 51) were investigated to complement in vitro results with cell culture supernatants. Ct values and RNA concentrations were determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The in vitro determination of the LoD showed no obvious differences in detection of omicron and delta for the RATs examined. The LoD in this study was at a dilution level of 1:1,000 (corresponding to 3.0-5.6 × 106 RNA copies/mL) for tests I-V and at a dilution level of 1:100 (corresponding to 3.7-4.9 × 107 RNA copies/mL) for tests VI and VII. Based on clinical specimens, no obvious differences were observed between RAT positivity rates when comparing omicron to delta in this study setting. Overall positivity rates varied between manufacturers with 30-81% for omicron and 42-71% for delta. Test VII was only conducted in vitro with cell culture supernatants for feasibility reasons. In the range of Ct < 23, positivity rates were 50-100% for omicron and 67-93% for delta. CONCLUSION: In this study, RATs from various manufacturers were investigated, which displayed no obvious differences in terms of analytical LoD in vitro and RAT positivity rates based on clinical samples comparing the VOCs omicron and delta. However, differences between tests produced by various manufacturers were detected. In terms of clinical samples, a focus of this study was on specimens with high virus concentrations. Further systematic, clinical and laboratory studies utilizing large datasets are urgently needed to confirm reliable performance in terms of sensitivity and specificity for all individual RATs and SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Técnicas de Cultivo de Célula , ARN
5.
Euro Surveill ; 28(34)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37616114

RESUMEN

BackgroundLyme borreliosis (LB), caused by Borrelia burgdorferi (Bb), is the most common tick-borne infection in Germany. Antibodies against Bb are prevalent in the general population but information on temporal changes of prevalence and estimates of seroconversion (seroincidence) and seroreversion are lacking, especially for children and adolescents.AimWe aimed at assessing antibodies against Bb and factors associated with seropositivity in children and adolescents in Germany.MethodsWe estimated seroprevalence via two consecutive cross-sectional surveys (2003-2006 and 2014-2017). Based on a longitudinal survey component, we estimated annual seroconversion/seroreversion rates.ResultsSeroprevalence was 4.4% (95% confidence interval (CI): 3.9-4.9%) from 2003 to 2006 and 4.1% (95% CI: 3.2-5.1%) from 2014 to 2017. Seroprevalence increased with age, was higher in male children, the south-eastern regions of Germany and among those with a high socioeconomic status. The annual seroconversion rate was 0.3% and the annual seroreversion rate 3.9%. Males were more likely to seroconvert compared with females. Low antibody levels were the main predictor of seroreversion.ConclusionWe did not detect a change in seroprevalence in children and adolescents in Germany over a period of 11 years. Potential long-term changes, for example due to climatic changes, need to be assessed in consecutive serosurveys. Seroconversion was more likely among children and adolescents than among adults, representing a target group for preventive measures. Seroreversion rates are over twice as high in children and adolescents compared with previous studies among adults. Thus, seroprevalence estimates and seroconversion rates in children are likely underestimated.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Anticuerpos Antibacterianos , Estudios Transversales , Alemania/epidemiología , Inmunoglobulina G , Seroconversión , Estudios Seroepidemiológicos , Enfermedad de Lyme/epidemiología
6.
Artículo en Alemán | MEDLINE | ID: mdl-37221263

RESUMEN

Bacterial zoonotic pathogens are often the cause of diseases, sometimes with severe outcomes. They are mutually transferable between animals (both wild and domestic) and humans. The transmission paths are very variable and include oral intake via food, respiratory infection via droplets and aerosols, or infections via vectors such as tick bites or rodent contact. Furthermore, the emergence and spread of antibiotic-resistant bacterial pathogens is of paramount public health concern.The likelihood of further spread is influenced by various factors. These include the increase in international trade, the endangerment of animal habitats, and the increasingly closer contact between humans and wild animals. Additionally, changes in livestock and climate change may also contribute. Therefore, research into zoonoses serves to protect human and animal health and is of particular social, political, and economic importance.The aim of this review article is to present the range of infectious diseases caused by bacterial zoonotic pathogens in order to provide a better understanding of the important work in public health services, animal health services, and food safety control. The different transmission routes, epidemic potentials, and epidemiological measures of the exemplary selected diseases show the challenges for the public health system to monitor and control the spread of these bacterial pathogens in order to protect the population from disease.


Asunto(s)
Zoonosis Bacterianas , Salud Pública , Animales , Humanos , Comercio , Incidencia , Alemania , Internacionalidad , Zoonosis/microbiología
7.
Appl Environ Microbiol ; 88(5): e0155521, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-34986011

RESUMEN

Lyme borreliosis is the most common vector-borne disease in the Northern Hemisphere, caused by spirochetes belonging to the Borrelia burgdorferi sensu lato species complex, which are transmitted by ixodid ticks. B. burgdorferi sensu lato species produce a family of proteins on the linear plasmid 54 (PFam54), some of which confer the functions of cell adhesion and inactivation of complement, the first line of host defense. However, the impact of PFam54 in promoting B. burgdorferi sensu lato pathogenesis remains unclear because of the hurdles to simultaneously knock out all PFam54 proteins in a spirochete. Here, we describe two Borrelia bavariensis strains, PBN and PNi, isolated from patients naturally lacking PFam54 but maintaining the rest of the genome with greater than 95% identity to the reference B. bavariensis strain, PBi. We found that PBN and PNi less efficiently survive in human serum than PBi. Such defects were restored by introducing two B. bavariensis PFam54 recombinant proteins, BGA66 and BGA71, confirming the role of these proteins in providing complement evasion of B. bavariensis. Further, we found that all three strains remain detectable in various murine tissues 21 days post-subcutaneous infection, supporting the nonessential role of B. bavariensis PFam54 in promoting spirochete persistence. This study identified and utilized isolates deficient in PFam54 to associate the defects with the absence of these proteins, building the foundation to further study the role of each PFam54 protein in contributing to B. burgdorferi sensu lato pathogenesis. IMPORTANCE To establish infections, Lyme borreliae utilize various means to overcome the host's immune system. Proteins encoded by the PFam54 gene array play a role in spirochete survival in vitro and in vivo. Moreover, this gene array has been described in all currently available Lyme borreliae genomes. By investigating the first two Borrelia bavariensis isolates naturally lacking the entire PFam54 gene array, we showed that both patient isolates display an increased susceptibility to human serum, which can be rescued in the presence of two PFam54 recombinant proteins. However, both isolates remain infectious to mice after intradermal inoculation, suggesting the nonessential role of PFam54 during the long-term, but may differ slightly in the colonization of specific tissues. Furthermore, these isolates show high genomic similarity to type strain PBi (>95%) and could be used in future studies investigating the role of each PFam54 protein in Lyme borreliosis pathogenesis.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia , Ixodes , Enfermedad de Lyme , Animales , Borrelia/genética , Grupo Borrelia Burgdorferi/genética , Humanos , Ratones , Plásmidos , Spirochaetales
8.
Emerg Infect Dis ; 27(8): 2192-2196, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087088

RESUMEN

We investigated severe acute respiratory syndrome coronavirus 2 infections in primary schools, kindergartens, and nurseries in Germany. Of 3,169 oropharyngeal swab specimens, only 2 were positive by real-time reverse transcription PCR. Asymptomatic children attending these institutions do not appear to be driving the pandemic when appropriate infection control measures are used.


Asunto(s)
COVID-19 , Casas Cuna , Niño , Alemania/epidemiología , Humanos , Lactante , SARS-CoV-2 , Instituciones Académicas , Vigilancia de Guardia
9.
J Gen Virol ; 102(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34623233

RESUMEN

A number of seroassays are available for SARS-CoV-2 testing; yet, head-to-head evaluations of different testing principles are limited, especially using raw values rather than categorical data. In addition, identifying correlates of protection is of utmost importance, and comparisons of available testing systems with functional assays, such as direct viral neutralisation, are needed.We analysed 6658 samples consisting of true-positives (n=193), true-negatives (n=1091), and specimens of unknown status (n=5374). For primary testing, we used Euroimmun-Anti-SARS-CoV-2-ELISA-IgA/IgG and Roche-Elecsys-Anti-SARS-CoV-2. Subsequently virus-neutralisation, GeneScriptcPass, VIRAMED-SARS-CoV-2-ViraChip, and Mikrogen-recomLine-SARS-CoV-2-IgG were applied for confirmatory testing. Statistical modelling generated optimised assay cut-off thresholds. Sensitivity of Euroimmun-anti-S1-IgA was 64.8%, specificity 93.3% (manufacturer's cut-off); for Euroimmun-anti-S1-IgG, sensitivity was 77.2/79.8% (manufacturer's/optimised cut-offs), specificity 98.0/97.8%; Roche-anti-N sensitivity was 85.5/88.6%, specificity 99.8/99.7%. In true-positives, mean and median Euroimmun-anti-S1-IgA and -IgG titres decreased 30/90 days after RT-PCR-positivity, Roche-anti-N titres decreased significantly later. Virus-neutralisation was 80.6% sensitive, 100.0% specific (≥1:5 dilution). Neutralisation surrogate tests (GeneScriptcPass, Mikrogen-recomLine-RBD) were >94.9% sensitive and >98.1% specific. Optimised cut-offs improved test performances of several tests. Confirmatory testing with virus-neutralisation might be complemented with GeneScriptcPassTM or recomLine-RBD for certain applications. Head-to-head comparisons given here aim to contribute to the refinement of testing strategies for individual and public health use.


Asunto(s)
Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Prueba de Ácido Nucleico para COVID-19 , Estudios de Cohortes , Humanos
10.
Euro Surveill ; 26(16)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890568

RESUMEN

SARS-CoV-2 variants of concern (VOC) should not escape molecular surveillance. We investigated if SARS-CoV-2 rapid antigen tests (RATs) could detect B.1.1.7 and B.1.351 VOCs in certain laboratory conditions. Infectious cell culture supernatants containing B.1.1.7, B.1.351 or non-VOC SARS-CoV-2 were respectively diluted both in DMEM and saliva. Dilutions were analysed with Roche, Siemens, Abbott, nal von minden and RapiGEN RATs. While further studies with appropriate real-life clinical samples are warranted, all RATs detected B.1.1.7 and B.1.351, generally comparable to non-VOC strain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba Serológica para COVID-19 , Alemania , Humanos
11.
BMC Genomics ; 21(1): 702, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032522

RESUMEN

BACKGROUND: Borrelia bavariensis is one of the agents of Lyme Borreliosis (or Lyme disease) in Eurasia. The genome of the Borrelia burgdorferi sensu lato species complex, that includes B. bavariensis, is known to be very complex and fragmented making the assembly of whole genomes with next-generation sequencing data a challenge. RESULTS: We present a genome reconstruction for 33 B. bavariensis isolates from Eurasia based on long-read (Pacific Bioscience, for three isolates) and short-read (Illumina) data. We show that the combination of both sequencing techniques allows proper genome reconstruction of all plasmids in most cases but use of a very close reference is necessary when only short-read sequencing data is available. B. bavariensis genomes combine a high degree of genetic conservation with high plasticity: all isolates share the main chromosome and five plasmids, but the repertoire of other plasmids is highly variable. In addition to plasmid losses and gains through horizontal transfer, we also observe several fusions between plasmids. Although European isolates of B. bavariensis have little diversity in genome content, there is some geographic structure to this variation. In contrast, each Asian isolate has a unique plasmid repertoire and we observe no geographically based differences between Japanese and Russian isolates. Comparing the genomes of Asian and European populations of B. bavariensis suggests that some genes which are markedly different between the two populations may be good candidates for adaptation to the tick vector, (Ixodes ricinus in Europe and I. persulcatus in Asia). CONCLUSIONS: We present the characterization of genomes of a large sample of B. bavariensis isolates and show that their plasmid content is highly variable. This study opens the way for genomic studies seeking to understand host and vector adaptation as well as human pathogenicity in Eurasian Lyme Borreliosis agents.


Asunto(s)
Secuencia Conservada , Genoma Bacteriano , Ixodes , Filogenia , Spirochaetales , Animales , Asia , Grupo Borrelia Burgdorferi , Secuencia Conservada/genética , Europa (Continente) , Genoma Bacteriano/genética , Genómica , Humanos , Enfermedad de Lyme/microbiología , Plásmidos/genética , Federación de Rusia , Spirochaetales/clasificación , Spirochaetales/genética
12.
BMC Genomics ; 21(1): 16, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906865

RESUMEN

BACKGROUND: The genus Borrelia comprises spirochaetal bacteria maintained in natural transmission cycles by tick vectors and vertebrate reservoir hosts. The main groups are represented by a species complex including the causative agents of Lyme borreliosis and relapsing fever group Borrelia. Borrelia miyamotoi belongs to the relapsing fever group of spirochetes and forms distinct populations in North America, Asia, and Europe. As all Borrelia species B. miyamotoi possess an unusual and complex genome consisting of a linear chromosome and a number of linear and circular plasmids. The species is considered an emerging human pathogen and an increasing number of human cases are being described in the Northern hemisphere. The aim of this study was to produce a high quality reference genome that will facilitate future studies into genetic differences between different populations and the genome plasticity of B. miyamotoi. RESULTS: We used multiple available sequencing methods, including Pacific Bioscience single-molecule real-time technology (SMRT) and Oxford Nanopore technology (ONT) supplemented with highly accurate Illumina sequences, to explore the suitability for whole genome assembly of the Russian B. miyamotoi isolate, Izh-4. Plasmids were typed according to their potential plasmid partitioning genes (PF32, 49, 50, 57/62). Comparing and combining results of both long-read (SMRT and ONT) and short-read methods (Illumina), we determined that the genome of the isolate Izh-4 consisted of one linear chromosome, 12 linear and two circular plasmids. Whilst the majority of plasmids had corresponding contigs in the Asian B. miyamotoi isolate FR64b, there were only four that matched plasmids of the North American isolate CT13-2396, indicating differences between B. miyamotoi populations. Several plasmids, e.g. lp41, lp29, lp23, and lp24, were found to carry variable major proteins. Amongst those were variable large proteins (Vlp) subtype Vlp-α, Vlp-γ, Vlp-δ and also Vlp-ß. Phylogenetic analysis of common plasmids types showed the uniqueness in Russian/Asian isolates of B. miyamotoi compared to other isolates. CONCLUSIONS: We here describe the genome of a Russian B. miyamotoi clinical isolate, providing a solid basis for future comparative genomics of B. miyamotoi isolates. This will be a great impetus for further basic, molecular and epidemiological research on this emerging tick-borne pathogen.


Asunto(s)
Borrelia/genética , Genoma Bacteriano/genética , Genómica/métodos , Plásmidos/genética , Secuenciación Completa del Genoma/métodos , Animales , Proteínas Bacterianas/genética , Secuencia de Bases , Borrelia/clasificación , Borrelia/patogenicidad , Cromosomas Bacterianos/genética , ADN Bacteriano/genética , Humanos , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Filogenia , Fiebre Recurrente/microbiología , Especificidad de la Especie
13.
Environ Microbiol ; 22(12): 5033-5047, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32452153

RESUMEN

Members of the Borrelia burgdorferi sensu lato (s.l.) species complex are known to cause human Lyme borreliosis. Because of longevity of some reservoir hosts and the Ixodes tick vectors' life cycle, long-term studies are required to better understand species and population dynamics of these bacteria in their natural habitats. Ticks were collected between 1999 and 2010 in three ecologically different habitats in Latvia. We used multilocus sequence typing utilizing eight chromosomally located housekeeping genes to obtain information about species and population fluctuations and/or stability of B. burgdorferi s.l. in these habitats. The average prevalence over all years was 18.9%. From initial high-infection prevalences of 25.5%, 33.1% and 31.8%, from 2002 onwards the infection rates steadily decreased to 7.3%. Borrelia afzelii and Borrelia garinii were the most commonly found genospecies but striking local differences were obvious. In one habitat, a significant shift from rodent-associated to bird-associated Borrelia species was noted whilst in the other habitats, Borrelia species composition was relatively stable over time. Sequence types (STs) showed a random spatial and temporal distribution. These results demonstrated that there are temporal regional changes and extrapolations from one habitat to the next are not possible.


Asunto(s)
Grupo Borrelia Burgdorferi/aislamiento & purificación , Borrelia burgdorferi/aislamiento & purificación , Ixodes/microbiología , Enfermedad de Lyme/epidemiología , Animales , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , Ecosistema , Humanos , Letonia/epidemiología , Estudios Longitudinales , Enfermedad de Lyme/microbiología , Tipificación de Secuencias Multilocus , Prevalencia
14.
Mol Ecol ; 29(3): 485-501, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31846173

RESUMEN

Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.


Asunto(s)
Borrelia/genética , Ixodes/microbiología , Enfermedad de Lyme/microbiología , Animales , Enfermedades de las Aves/microbiología , Europa (Continente) , Humanos , Tipificación de Secuencias Multilocus/métodos , Pájaros Cantores/microbiología
15.
Int J Syst Evol Microbiol ; 70(2): 849-856, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31793856

RESUMEN

Borrelia species are vector-borne parasitic bacteria with unusual, highly fragmented genomes that include a linear chromosome and linear as well as circular plasmids that differ numerically between and within various species. Strain CA690T, which was cultivated from a questing Ixodes spinipalpis nymph in the San Francisco Bay area, CA, was determined to be genetically distinct from all other described species belonging to the Borrelia burgdorferi sensu lato complex. The genome, including plasmids, was assembled using a hybrid assembly of short Illumina reads and long reads obtained via Oxford Nanopore Technology. We found that strain CA690T has a main linear chromosome containing 902176 bp with a blast identity ≤91 % compared with other Borrelia species chromosomes and five linear and two circular plasmids. A phylogeny based on 37 single-copy genes of the main linear chromosome and rooted with the relapsing fever species Borrelia duttonii strain Ly revealed that strain CA690T had a sister-group relationship with, and occupied a basal position to, species occurring in North America. We propose to name this species Borrelia maritima sp. nov. The type strain, CA690T, has been deposited in two national culture collections, DSMZ (=107169) and ATCC (=TSD-160).


Asunto(s)
Grupo Borrelia Burgdorferi/clasificación , Ixodes/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Grupo Borrelia Burgdorferi/aislamiento & purificación , California , Cromosomas Bacterianos , ADN Bacteriano/genética , Plásmidos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Int J Syst Evol Microbiol ; 70(5): 3577-3581, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32320380

RESUMEN

Rejection (nomen rejiciendum) of the name Borreliella and all new combinations therein is being requested on grounds of risk to human health and patient safety (Principle 1, subprinciple 2 and Rule 56a) and violation to aim for stability of names, to avoid useless creation of names (Principle 1, subprinciple 1 and 3) and that names should not be changed without sufficient reason (Principle 9 of the International Code of Nomenclature of Prokaryotes).


Asunto(s)
Filogenia , Spirochaetales/clasificación , Terminología como Asunto
17.
Parasitol Res ; 119(1): 299-315, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31734862

RESUMEN

The capability of imidacloprid 10% + flumethrin 4.5% (Seresto®) collars to prevent transmission of Borrelia burgdorferi sensu lato (Bbsl) and Anaplasma phagocytophilum (Ap) by naturally infected ticks was evaluated in two studies with 44 dogs. In each study, one group served as non-treated control, whereas the other groups were treated with the Seresto® collar. All dogs were exposed to naturally Bbsl- and Ap-infected hard ticks (Ixodes ricinus, Ixodes scapularis). In study 1, tick infestation was performed on study day (SD) 63 (2 months post-treatment [p.t.]); in study 2, it was performed on SD 32 (one month p.t.) respectively SD 219 (seven months p.t.). In situ tick counts were performed 2 days after infestation. Tick counts and removals followed 6 (study 1) or 5 days (study 2) later. Blood sampling was performed for the detection of specific Bbsl and Ap antibodies and, in study 1, for the documentation of Ap DNA by PCR. Skin biopsies were examined for Bbsl by PCR and culture (only study 1). The efficacy against Ixodes spp. was 100% at all time points. In study 1, two of six non-treated dogs became infected with Bbsl, and four of six tested positive for Ap; none of the treated dogs tested positive for Bbsl or Ap. In study 2, ten of ten non-treated dogs became infected with Bbsl and Ap; none of the treated dogs tested positive for Bbsl or Ap; 100% acaricidal efficacy was shown in both studies. Transmission of Bbsl and Ap was successfully blocked for up to 7 months.


Asunto(s)
Acaricidas/uso terapéutico , Transmisión de Enfermedad Infecciosa/veterinaria , Enfermedades de los Perros/tratamiento farmacológico , Ehrlichiosis/veterinaria , Enfermedad de Lyme/veterinaria , Infestaciones por Garrapatas/veterinaria , Acaricidas/administración & dosificación , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/inmunología , Anaplasma phagocytophilum/fisiología , Animales , Anticuerpos Antibacterianos/sangre , Vectores Arácnidos/microbiología , Borrelia burgdorferi/genética , Borrelia burgdorferi/inmunología , Borrelia burgdorferi/fisiología , ADN Bacteriano/sangre , Transmisión de Enfermedad Infecciosa/prevención & control , Enfermedades de los Perros/prevención & control , Enfermedades de los Perros/transmisión , Perros , Ehrlichiosis/prevención & control , Ehrlichiosis/transmisión , Ixodes/microbiología , Enfermedad de Lyme/prevención & control , Enfermedad de Lyme/transmisión , Neonicotinoides/administración & dosificación , Nitrocompuestos/administración & dosificación , Piretrinas/administración & dosificación , Infestaciones por Garrapatas/tratamiento farmacológico , Infestaciones por Garrapatas/microbiología , Infestaciones por Garrapatas/parasitología , Resultado del Tratamiento
18.
Euro Surveill ; 25(9)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32156330

RESUMEN

The need for timely establishment of diagnostic assays arose when Germany was confronted with the first travel-associated outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Europe. We describe our laboratory experiences during a large contact tracing investigation, comparing previously published real-time RT-PCR assays in different PCR systems and a commercial kit. We found that assay performance using the same primers and probes with different PCR systems varied and the commercial kit performed well.


Asunto(s)
Betacoronavirus , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus , Neumonía Viral , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/genética , Alemania , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Neumonía Viral/diagnóstico , Neumonía Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad , Factores de Tiempo , Proteínas del Envoltorio Viral/análisis , Proteínas del Envoltorio Viral/genética , Flujo de Trabajo
19.
Mol Phylogenet Evol ; 131: 93-98, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30423440

RESUMEN

Borrelia burgdorferi sensu lato comprises a species complex of tick-transmitted bacteria that includes the agents of human Lyme borreliosis. Borrelia turdi is a genospecies of this complex that exists in cryptic transmission cycles mainly between ornithophilic tick vectors and their avian hosts. The species has been originally discovered in avian transmission cycles in Asia but has increasingly been found in Europe. Next generation sequencing was used to sequence the genome of B. turdi isolates obtained from ticks feeding on birds in Portugal to better understand the evolution and phylogenetic relationship of this avian and ornithophilic tick-associated genospecies. Here we use draft genomes of these B. turdi isolates for comparative analysis and to determine the taxonomic position within the B. burgdorferi s.l. species complex. The main chromosomes showed a maximum similarity of 93% to other Borrelia species whilst most plasmids had lower similarities. All three isolates had nine or 10 plasmids and, interestingly, one plasmid with a novel partitioning protein; this plasmid was termed lp30. Phylogenetic analysis of multilocus sequence typing housekeeping genes and 113 single copy orthologous genes revealed that the isolates clustered according to their classification as B. turdi. In phylogenies generated from these 113 genes the isolates cluster together with other Eurasian genospecies and form a sister clade to the avian associated B. garinii and the rodent associated B. bavariensis. These findings show that Borrelia species maintained in cryptic ecological cycles need to be included to fully understand the complex ecology and evolutionary history of this bacterial species complex.


Asunto(s)
Aves/microbiología , Grupo Borrelia Burgdorferi/genética , Borrelia/genética , Genoma Bacteriano , Filogenia , Animales
20.
Parasitol Res ; 118(12): 3205-3216, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720842

RESUMEN

In 2014, a new tick species, Ixodes inopinatus, was described, which is closely related to Ixodes ricinus. So far, I. inopinatus has been found in Tunisia, Morocco, Spain, Portugal, Romania, Austria, and southern Germany. No data is yet available regarding occurrence of I. inopinatus in northern Germany and the potential role of I. inopinatus as a vector for tick-borne pathogens. Therefore, 3845 DNA samples from Ixodes ticks collected for prevalence studies on Borrelia spp., Rickettsia spp., and Anaplasma phagocytophilum during the years 2010-2015 in the northern German cities of Hamburg and Hanover were differentiated into I. ricinus or I. inopinatus by sequencing a part of the 16S rRNA gene. In total, 4% (137/3845) of the sequenced ticks were assigned to the species I. inopinatus and 96% (3708/3845) to I. ricinus. The prevalence of Borrelia spp., Rickettsia spp., and A. phagocytophilum DNA in I. inopinatus was 34% (46/137), 46% (63/137), and 3% (4/137), respectively, whereas the prevalence of these bacteria in I. ricinus was 25% (919/3708), 47% (1729/3708), and 4% (135/3708), respectively. Compared with I. ricinus, significantly more I. inopinatus ticks tested positive for Borrelia. To the best of our knowledge, this is the first report of I. inopinatus in northern Germany. Detection of the DNA of Borrelia spp., Rickettsia spp., and A. phagocytophilum in questing I. inopinatus indicates a potential role of this tick species as a vector of these pathogens, which needs to be confirmed by transmission experiments.


Asunto(s)
Anaplasma phagocytophilum/genética , Vectores Arácnidos/microbiología , Borrelia/genética , Ixodes/microbiología , Rickettsia/genética , Animales , Vectores Arácnidos/clasificación , Vectores Arácnidos/genética , Alemania/epidemiología , Ixodes/clasificación , Ixodes/genética , ARN Ribosómico 16S/genética , Enfermedades por Picaduras de Garrapatas/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA