Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(6): 1409-21, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24269006

RESUMEN

N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.


Asunto(s)
Meiosis , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces/citología , Saccharomyces/metabolismo , Adenosina/análogos & derivados , Adenosina/análisis , Adenosina/metabolismo , Nucléolo Celular/metabolismo , Genoma Fúngico , Metilación , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , ARNt Metiltransferasas/metabolismo
2.
Nature ; 565(7741): 606-611, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651636

RESUMEN

Spliceosomal introns are ubiquitous non-coding RNAs that are typically destined for rapid debranching and degradation. Here we describe 34 excised introns in Saccharomyces cerevisiae that-despite being rapidly degraded in log-phase growth-accumulate as linear RNAs under either saturated-growth conditions or other stresses that cause prolonged inhibition of TORC1, which is a key integrator of growth signalling. Introns that become stabilized remain associated with components of the spliceosome and differ from other spliceosomal introns in having a short distance between their lariat branch point and 3' splice site, which is necessary and sufficient for their stabilization. Deletion of these unusual introns is disadvantageous in saturated conditions and causes aberrantly high growth rates in yeast that are chronically challenged with the TORC1 inhibitor rapamycin. The reintroduction of native or engineered stable introns suppresses this aberrant rapamycin response. Thus, excised introns function within the TOR growth-signalling network of S. cerevisiae and, more generally, excised spliceosomal introns can have biological functions.


Asunto(s)
Intrones/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Actinas/genética , Genes Fúngicos/genética , Aptitud Genética , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/genética , Sitios de Empalme de ARN/genética , Estabilidad del ARN , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Sirolimus/farmacología , Empalmosomas/metabolismo
3.
Cell ; 135(4): 726-37, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19013280

RESUMEN

The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1 expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1(+) cells avoid exploitation by nonexpressing flo1 cells by self/non-self recognition: FLO1(+) cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known "green beard genes," which direct cooperation toward other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly evolving social trait.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Biopelículas , Farmacorresistencia Fúngica , Citometría de Flujo , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Lectinas de Unión a Manosa , Proteínas de la Membrana/metabolismo , Microscopía , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nucleic Acids Res ; 48(13): 7404-7420, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32501509

RESUMEN

RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae, RNAi is present in other budding-yeast species, including Naumovozyma castellii, which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5'-to-3' exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii, and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand and degradation of sliced target RNA.


Asunto(s)
Exorribonucleasas/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Proteínas Argonautas/metabolismo , Clonación Molecular , Exorribonucleasas/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces/genética
5.
Proc Natl Acad Sci U S A ; 116(11): 5045-5054, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804202

RESUMEN

The phenotypic consequence of a given mutation can be influenced by the genetic background. For example, conditional gene essentiality occurs when the loss of function of a gene causes lethality in one genetic background but not another. Between two individual Saccharomyces cerevisiae strains, S288c and Σ1278b, ∼1% of yeast genes were previously identified as "conditional essential." Here, in addition to confirming that some conditional essential genes are modified by a nonchromosomal element, we show that most cases involve a complex set of genomic modifiers. From tetrad analysis of S288C/Σ1278b hybrid strains and whole-genome sequencing of viable hybrid spore progeny, we identified complex sets of multiple genomic regions underlying conditional essentiality. For a smaller subset of genes, including CYS3 and CYS4, each of which encodes components of the cysteine biosynthesis pathway, we observed a segregation pattern consistent with a single modifier associated with conditional essentiality. In natural yeast isolates, we found that the CYS3/CYS4 conditional essentiality can be caused by variation in two independent modifiers, MET1 and OPT1, each with roles associated with cellular cysteine physiology. Interestingly, the OPT1 allelic variation appears to have arisen independently from separate lineages, with rare allele frequencies below 0.5%. Thus, while conditional gene essentiality is usually driven by genetic interactions associated with complex modifier architectures, our analysis also highlights the role of functionally related, genetically independent, and rare variants.


Asunto(s)
Genes Modificadores , Antecedentes Genéticos , Saccharomyces cerevisiae/genética , Alelos , Vías Biosintéticas , Cisteína/biosíntesis , Genes Esenciales , Genoma Fúngico , Filogenia , Saccharomyces cerevisiae/aislamiento & purificación
6.
Mol Cell ; 45(4): 470-82, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22264825

RESUMEN

Mechanisms through which long intergenic noncoding RNAs (ncRNAs) exert regulatory effects on eukaryotic biological processes remain largely elusive. Most studies of these phenomena rely on methods that measure average behaviors in cell populations, lacking resolution to observe the effects of ncRNA transcription on gene expression in a single cell. Here, we combine quantitative single-molecule RNA FISH experiments with yeast genetics and computational modeling to gain mechanistic insights into the regulation of the Saccharomyces cerevisiae protein-coding gene FLO11 by two intergenic ncRNAs, ICR1 and PWR1. Direct detection of FLO11 mRNA and these ncRNAs in thousands of individual cells revealed alternative expression states and provides evidence that ICR1 and PWR1 contribute to FLO11's variegated transcription, resulting in Flo11-dependent phenotypic heterogeneity in clonal cell populations by modulating recruitment of key transcription factors to the FLO11 promoter.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Glicoproteínas de Membrana/genética , ARN no Traducido/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , ADN Intergénico , Hibridación Fluorescente in Situ , Modelos Genéticos , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/fisiología
7.
Metab Eng ; 51: 20-31, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30268818

RESUMEN

Monoethylene glycol (MEG) is an important commodity chemical with applications in numerous industrial processes, primarily in the manufacture of polyethylene terephthalate (PET) polyester used in packaging applications. In the drive towards a sustainable chemical industry, bio-based production of MEG from renewable biomass has attracted growing interest. Recent attempts for bio-based MEG production have investigated metabolic network modifications in Escherichia coli, specifically rewiring the xylose assimilation pathways for the synthesis of MEG. In the present study, we examined the suitability of Saccharomyces cerevisiae, a preferred organism for industrial applications, as platform for MEG biosynthesis. Based on combined genetic, biochemical and fermentation studies, we report evidence for the existence of an endogenous biosynthetic route for MEG production from D-xylose in S. cerevisiae which consists of phosphofructokinase and fructose-bisphosphate aldolase, the two key enzymes in the glycolytic pathway. Further metabolic engineering and process optimization yielded a strain capable of producing up to 4.0 g/L MEG, which is the highest titer reported in yeast to-date.


Asunto(s)
Glicol de Etileno/metabolismo , Glucólisis/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Xilosa/metabolismo
8.
Annu Rev Genet ; 43: 1-24, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19640229

RESUMEN

Eukaryotic microorganisms have evolved ingenious mechanisms to generate variability at their cell surface, permitting differential adherence, rapid adaptation to changing environments, and evasion of immune surveillance. Fungi such as Saccharomyces cerevisiae and the pathogen Candida albicans carry a family of mucin and adhesin genes that allow adhesion to various surfaces and tissues. Trypanosoma cruzi, T. brucei, and Plasmodium falciparum likewise contain large arsenals of different cell surface adhesion genes. In both yeasts and protozoa, silencing and differential expression of the gene family results in surface variability. Here, we discuss unexpected similarities in the structure and genomic location of the cell surface genes, the role of repeated DNA sequences, and the genetic and epigenetic mechanisms-all of which contribute to the remarkable cell surface variability in these highly divergent microbes.


Asunto(s)
Alveolados/citología , Alveolados/genética , Hongos/citología , Hongos/genética , Membrana Celular/metabolismo , Epigénesis Genética , Genes Fúngicos , Genes Protozoarios
9.
Proc Natl Acad Sci U S A ; 111(21): 7719-22, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825890

RESUMEN

The measurement of any nonchromosomal genetic contribution to the heritability of a trait is often confounded by the inability to control both the chromosomal and nonchromosomal information in a population. We have designed a unique system in yeast where we can control both sources of information so that the phenotype of a single chromosomal polymorphism can be measured in the presence of different cytoplasmic elements. With this system, we have shown that both the source of the mitochondrial genome and the presence or absence of a dsRNA virus influence the phenotype of chromosomal variants that affect the growth of yeast. Moreover, by considering this nonchromosomal information that is passed from parent to offspring and by allowing chromosomal and nonchromosomal information to exhibit nonadditive interactions, we are able to account for much of the heritability of growth traits. Taken together, our results highlight the importance of including all sources of heritable information in genetic studies and suggest a possible avenue of attack for finding additional missing heritability.


Asunto(s)
Cromosomas/genética , Herencia Extracromosómica/genética , Terapia Genética/métodos , Enfermedades Mitocondriales/terapia , Modelos Genéticos , Fenotipo , Levaduras/genética , Análisis de Varianza , Biología Computacional , Frecuencia de los Genes , Humanos , Enfermedades Mitocondriales/genética , Polimorfismo de Nucleótido Simple/genética , Levaduras/crecimiento & desarrollo
10.
PLoS Pathog ; 9(6): e1003446, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825946

RESUMEN

Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Proteínas de Homeodominio/inmunología , Lectinas Tipo C/inmunología , Macrófagos Peritoneales/inmunología , Neuropéptidos/inmunología , Fagocitosis/inmunología , Proteínas Tirosina Quinasas/inmunología , Actinas/genética , Actinas/inmunología , Actinas/metabolismo , Agammaglobulinemia Tirosina Quinasa , Animales , Candida albicans/metabolismo , Candidiasis/genética , Candidiasis/metabolismo , Candidiasis/patología , Línea Celular , Diglicéridos/genética , Diglicéridos/inmunología , Diglicéridos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Ratones , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Fagocitosis/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/inmunología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
11.
PLoS Genet ; 8(6): e1002732, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685417

RESUMEN

For the yeast Saccharomyces cerevisiae, nutrient limitation is a key developmental signal causing diploid cells to switch from yeast-form budding to either foraging pseudohyphal (PH) growth or meiosis and sporulation. Prolonged starvation leads to lineage restriction, such that cells exiting meiotic prophase are committed to complete sporulation even if nutrients are restored. Here, we have identified an earlier commitment point in the starvation program. After this point, cells, returned to nutrient-rich medium, entered a form of synchronous PH development that was morphologically and genetically indistinguishable from starvation-induced PH growth. We show that lineage restriction during this time was, in part, dependent on the mRNA methyltransferase activity of Ime4, which played separable roles in meiotic induction and suppression of the PH program. Normal levels of meiotic mRNA methylation required the catalytic domain of Ime4, as well as two meiotic proteins, Mum2 and Slz1, which interacted and co-immunoprecipitated with Ime4. This MIS complex (Mum2, Ime4, and Slz1) functioned in both starvation pathways. Together, our results support the notion that the yeast starvation response is an extended process that progressively restricts cell fate and reveal a broad role of post-transcriptional RNA methylation in these decisions.


Asunto(s)
Proteínas de Ciclo Celular , Metilación , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ARNt Metiltransferasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/genética , Hifa/crecimiento & desarrollo , Meiosis/genética , Fenómenos Fisiológicos de la Nutrición/genética , Fenómenos Fisiológicos de la Nutrición/fisiología , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(2): 523-8, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22173636

RESUMEN

The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C. albicans Dicer (CaDcr1). CaDcr1 is capable of generating siRNAs in vitro and is required for siRNA generation in vivo. In addition, CaDCR1 complements a Dicer knockout in Saccharomyces castellii, restoring RNAi-mediated gene repression. Unexpectedly, deletion of the C. albicans CaDCR1 results in a severe slow-growth phenotype, whereas deletion of another core component of the RNAi pathway (CaAGO1) has little effect on growth, suggesting that CaDCR1 may have an essential function in addition to producing siRNAs. Indeed CaDcr1, the sole functional RNase III enzyme in C. albicans, has additional functions: it is required for cleavage of the 3' external transcribed spacer from unprocessed pre-rRNA and for processing the 3' tail of snRNA U4. Our results suggest two models whereby the RNase III enzymes of a fungal ancestor, containing both a canonical Dicer and Rnt1, evolved through a series of gene-duplication and gene-loss events to generate the variety of RNase III enzymes found in modern-day budding yeasts.


Asunto(s)
Candida albicans/enzimología , Evolución Molecular , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , Ribonucleasa III/fisiología , Empalmosomas/genética , Candida albicans/fisiología , Citometría de Flujo , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Modelos Genéticos , Filogenia , Ribonucleasa III/metabolismo , Sintenía/genética
13.
Nucleic Acids Res ; 40(9): 3870-85, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22241769

RESUMEN

The positions of nucleosomes across the genome influence several cellular processes, including gene transcription. However, our understanding of the factors dictating where nucleosomes are located and how this affects gene regulation is still limited. Here, we perform an extensive in vivo study to investigate the influence of the neighboring chromatin structure on local nucleosome positioning and gene expression. Using truncated versions of the Saccharomyces cerevisiae URA3 gene, we show that nucleosome positions in the URA3 promoter are at least partly determined by the local DNA sequence, with so-called 'anti-nucleosomal elements' like poly(dA:dT) tracts being key determinants of nucleosome positions. In addition, we show that changes in the nucleosome positions in the URA3 promoter strongly affect the promoter activity. Most interestingly, in addition to demonstrating the effect of the local DNA sequence, our study provides novel in vivo evidence that nucleosome positions are also affected by the position of neighboring nucleosomes. Nucleosome structure may therefore be an important selective force for conservation of gene order on a chromosome, because relocating a gene to another genomic position (where the positions of neighboring nucleosomes are different from the original locus) can have dramatic consequences for the gene's nucleosome structure and thus its expression.


Asunto(s)
Cromatina/química , Regulación Fúngica de la Expresión Génica , Nucleosomas/química , Saccharomyces cerevisiae/genética , Genes Fúngicos , Sitios Genéticos , Poli dA-dT/química , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia
14.
Proc Natl Acad Sci U S A ; 108(34): 14270-5, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21825168

RESUMEN

Dectin-1, the major ß-glucan receptor in leukocytes, triggers an effective immune response upon fungal recognition. Here we use sortase-mediated transpeptidation, a technique that allows placement of a variety of probes on a polypeptide backbone, to monitor the behavior of labeled functional dectin-1 in live cells with and without fungal challenge. Installation of probes on dectin-1 by sortagging permitted highly specific visualization of functional protein on the cell surface and its subsequent internalization upon ligand presentation. Retrieval of sortagged dectin-1 expressed in macrophages uncovered a unique interaction between dectin-1 and galectin-3 that functions in the proinflammatory response of macrophages to pathogenic fungi. When macrophages expressing dectin-1 are exposed to Candida albicans mutants with increased exposure of ß-glucan, the loss of galectin-3 dramatically accentuates the failure to trigger an appropriate TNF-α response.


Asunto(s)
Candida albicans/fisiología , Galectina 3/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Saccharomyces cerevisiae/fisiología , Animales , Biotinilación , Células de la Médula Ósea/citología , Endocitosis/efectos de los fármacos , Células HEK293 , Humanos , Inmunoprecipitación , Lectinas Tipo C , Ratones , Sondas Moleculares/metabolismo , Unión Proteica , Coloración y Etiquetado , Factor de Necrosis Tumoral alfa/metabolismo , Zimosan/metabolismo , beta-Glucanos/metabolismo
15.
Nat Genet ; 37(9): 986-90, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16086015

RESUMEN

Tandemly repeated DNA sequences are highly dynamic components of genomes. Most repeats are in intergenic regions, but some are in coding sequences or pseudogenes. In humans, expansion of intragenic triplet repeats is associated with various diseases, including Huntington chorea and fragile X syndrome. The persistence of intragenic repeats in genomes suggests that there is a compensating benefit. Here we show that in the genome of Saccharomyces cerevisiae, most genes containing intragenic repeats encode cell-wall proteins. The repeats trigger frequent recombination events in the gene or between the gene and a pseudogene, causing expansion and contraction in the gene size. This size variation creates quantitative alterations in phenotypes (e.g., adhesion, flocculation or biofilm formation). We propose that variation in intragenic repeat number provides the functional diversity of cell surface antigens that, in fungi and other pathogens, allows rapid adaptation to the environment and elusion of the host immune system.


Asunto(s)
Antígenos de Superficie/fisiología , Genes Fúngicos , Variación Genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Secuencias Repetidas en Tándem , Datos de Secuencia Molecular , Fenotipo , Recombinación Genética
16.
PLoS Biol ; 8(11): e1000523, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21072241

RESUMEN

Cell size increases significantly with increasing ploidy. Differences in cell size and ploidy are associated with alterations in gene expression, although no direct connection has been made between cell size and transcription. Here we show that ploidy-associated changes in gene expression reflect transcriptional adjustment to a larger cell size, implicating cellular geometry as a key parameter in gene regulation. Using RNA-seq, we identified genes whose expression was altered in a tetraploid as compared with the isogenic haploid. A significant fraction of these genes encode cell surface proteins, suggesting an effect of the enlarged cell size on the differential regulation of these genes. To test this hypothesis, we examined expression of these genes in haploid mutants that also produce enlarged size. Surprisingly, many genes differentially regulated in the tetraploid are identically regulated in the enlarged haploids, and the magnitude of change in gene expression correlates with the degree of size enlargement. These results indicate a causal relationship between cell size and transcription, with a size-sensing mechanism that alters transcription in response to size. The genes responding to cell size are enriched for those regulated by two mitogen-activated protein kinase pathways, and components in those pathways were found to mediate size-dependent gene regulation. Transcriptional adjustment to enlarged cell size could underlie other cellular changes associated with polyploidy. The causal relationship between cell size and transcription suggests that cell size homeostasis serves a regulatory role in transcriptome maintenance.


Asunto(s)
Tamaño de la Célula , Transcripción Genética , Algoritmos , Compartimento Celular , Regulación hacia Abajo , Regulación de la Expresión Génica , Mutación , Reacción en Cadena de la Polimerasa , Poliploidía , Saccharomyces cerevisiae
17.
Metab Eng ; 14(6): 611-22, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22921355

RESUMEN

Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Etanol/metabolismo , Vía de Pentosa Fosfato/genética , Ingeniería de Proteínas/métodos , Saccharomyces cerevisiae/fisiología , Xilosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Evolución Molecular Dirigida/métodos , Etanol/aislamiento & purificación , Mejoramiento Genético/métodos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Pichia/fisiología , Piromyces/fisiología , Regulación hacia Arriba/fisiología
18.
RNA Biol ; 9(9): 1123-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23018782

RESUMEN

Our recent finding that the Candida albicans RNase III enzyme CaDcr1 is an unusual, multifunctional RNase III coupled with data on the RNase III enzymes from other fungal species prompted us to seek a model that explained the evolution of RNase III's in modern budding yeast species. CaDcr1 has both dicer function (generates small RNA molecules from dsRNA precursors) and Rnt1 function, (catalyzes the maturation of 35S rRNA and U4 snRNA). Some budding yeast species have two distinct genes that encode these functions, a Dicer and RNT1, whereas others have only an RNT1 and no Dicer. As none of the budding yeast species has the canonical Dicer found in many other fungal lineages and most eukaryotes, the extant species must have evolved from an ancestor that lost the canonical Dicer, and evolved a novel Dicer from the essential RNT1 gene. No single, simple model could explain the evolution of RNase III enzymes from this ancestor because existing sequence data are consistent with two equally plausible models. The models share an architecture for RNase III evolution that involves gene duplication, loss, subfunctionalization, and neofunctionalization. This commentary explains our reasoning, and offers the prospect that further genomic data could further resolve the dilemma surrounding the budding yeast RNase III's evolution.


Asunto(s)
Candida albicans/genética , Evolución Molecular , Proteínas Fúngicas/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN de Hongos/genética , Ribonucleasa III/genética , Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , ARN de Hongos/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleasa III/metabolismo
19.
Proc Natl Acad Sci U S A ; 106(43): 18321-6, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19805129

RESUMEN

The identification of specific functional roles for the numerous long noncoding (nc)RNAs found in eukaryotic transcriptomes is currently a matter of intense study amid speculation that these ncRNAs have key regulatory roles. We have identified a pair of cis-interfering ncRNAs in yeast that contribute to the control of variegated gene expression at the FLO11 locus by implementing a regulatory circuit that toggles between two stable states. These capped, polyadenylated ncRNAs are transcribed across the large intergenic region upstream of the FLO11 ORF. As with mammalian long intervening (li)ncRNAs, these yeast ncRNAs (ICR1 and PWR1) are themselves regulated by transcription factors (Sfl1 and Flo8) and chromatin remodelers (Rpd3L) that are key elements in phenotypic transitions in yeast. The mechanism that we describe explains the unanticipated role of a histone deacetylase complex in activating gene expression, because Rpd3L mutants force the ncRNA circuit into a state that silences the expression of the adjacent variegating gene.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/metabolismo , Glicoproteínas de Membrana/genética , ARN de Hongos/genética , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ensamble y Desensamble de Cromatina , Histona Desacetilasas/genética , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Nat Cell Biol ; 4(8): 574-82, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12134158

RESUMEN

Mammalian Dock180 and ELMO proteins, and their homologues in Caenorhabditis elegans and Drosophila melanogaster, function as critical upstream regulators of Rac during development and cell migration. The mechanism by which Dock180 or ELMO mediates Rac activation is not understood. Here, we identify a domain within Dock180 (denoted Docker) that specifically recognizes nucleotide-free Rac and can mediate GTP loading of Rac in vitro. The Docker domain is conserved among known Dock180 family members in metazoans and in a yeast protein. In cells, binding of Dock180 to Rac alone is insufficient for GTP loading, and a Dock180 ELMO1 interaction is required. We can also detect a trimeric ELMO1 Dock180 Rac1 complex and ELMO augments the interaction between Dock180 and Rac. We propose that the Dock180 ELMO complex functions as an unconventional two-part exchange factor for Rac.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Caenorhabditis elegans , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Sitios de Unión , Proteínas Portadoras/química , Línea Celular , Guanosina Trifosfato/metabolismo , Humanos , Sustancias Macromoleculares , Datos de Secuencia Molecular , Fagocitosis , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA