Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(3): 1493-1504, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30476241

RESUMEN

Trans-splicing of trypanosomatid polycistronic transcripts produces polyadenylated monocistronic mRNAs modified to form the 5' cap4 structure (m7Gpppm36,6,2'Apm2'Apm2'Cpm23,2'U). NMR and X-ray crystallography reveal that Leishmania has a unique type of N-terminally-extended cap-binding protein (eIF4E4) that binds via a PAM2 motif to PABP1. This relies on the interactions of a combination of polar and charged amino acid side-chains together with multiple hydrophobic interactions, and underpins a novel architecture in the Leishmania cap4-binding translation factor complex. Measurements using microscale thermophoresis, fluorescence anisotropy and surface plasmon resonance characterize the key interactions driving assembly of the Leishmania translation initiation complex. We demonstrate that this complex can accommodate Leishmania eIF4G3 which, unlike the standard eukaryotic initiation complex paradigm, binds tightly to eIF4E4, but not to PABP1. Thus, in Leishmania, the chain of interactions 5'cap4-eIF4E4-PABP1-poly(A) bridges the mRNA 5' and 3' ends. Exceptionally, therefore, by binding tightly to two protein ligands and to the mRNA 5' cap4 structure, the trypanosomatid N-terminally extended form of eIF4E acts as the core molecular scaffold for the mRNA-cap-binding complex. Finally, the eIF4E4 N-terminal extension is an intrinsically disordered region that transitions to a partly folded form upon binding to PABP1, whereby this interaction is not modulated by poly(A) binding to PABP1.


Asunto(s)
Factor 4E Eucariótico de Iniciación/química , Leishmania/genética , Proteína I de Unión a Poli(A)/química , Trans-Empalme/genética , Cristalografía por Rayos X , Factor 4E Eucariótico de Iniciación/genética , Ligandos , Espectroscopía de Resonancia Magnética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteína I de Unión a Poli(A)/genética , Proteínas de Unión a Caperuzas de ARN/química , Proteínas de Unión a Caperuzas de ARN/genética , ARN Mensajero/química , ARN Mensajero/genética
2.
Nucleic Acids Res ; 45(2): 1015-1025, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-27928055

RESUMEN

Gene expression noise influences organism evolution and fitness. The mechanisms determining the relationship between stochasticity and the functional role of translation machinery components are critical to viability. eIF4G is an essential translation factor that exerts strong control over protein synthesis. We observe an asymmetric, approximately bell-shaped, relationship between the average intracellular abundance of eIF4G and rates of cell population growth and global mRNA translation, with peak rates occurring at normal physiological abundance. This relationship fits a computational model in which eIF4G is at the core of a multi-component-complex assembly pathway. This model also correctly predicts a plateau-like response of translation to super-physiological increases in abundance of the other cap-complex factors, eIF4E and eIF4A. Engineered changes in eIF4G abundance amplify noise, demonstrating that minimum stochasticity coincides with physiological abundance of this factor. Noise is not increased when eIF4E is overproduced. Plasmid-mediated synthesis of eIF4G imposes increased global gene expression stochasticity and reduced viability because the intrinsic noise for this factor influences total cellular gene noise. The naturally evolved eIF4G gene expression noise minimum maps within the optimal activity zone dictated by eIF4G's mechanistic role. Rate control and noise are therefore interdependent and have co-evolved to share an optimal physiological abundance point.


Asunto(s)
Factor 4G Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Biochem Soc Trans ; 43(6): 1266-70, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26614671

RESUMEN

Yeast commits approximately 76% of its energy budget to protein synthesis and the efficiency and control of this process are accordingly critical to organism growth and fitness. We now have detailed genetic, biochemical and biophysical knowledge of the components of the eukaryotic translation machinery. However, these kinds of information do not, in themselves, give us a satisfactory picture of how the overall system is controlled. This is where quantitative system analysis can enable a step-change in our understanding of biological resource management and how this relates to cell physiology and evolution. An important aspect of this more system-oriented approach to translational control is the inherent heterogeneity of cell populations that is generated by gene expression noise. In this short review, we address the fact that, although the vast majority of our knowledge of the translation machinery is based on experimental analysis of samples that each contain hundreds of millions of cells, in reality every cell is unique in terms of its composition and control properties. We have entered a new era in which research into the heterogeneity of cell systems promises to provide answers to many (previously unanswerable) questions about cell physiology and evolution.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Análisis de la Célula Individual/métodos , Regulación Fúngica de la Expresión Génica , Hibridación Fluorescente in Situ , Análisis de Flujos Metabólicos/métodos , Redes y Vías Metabólicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual/tendencias
4.
Mol Syst Biol ; 9: 635, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340841

RESUMEN

Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non-intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non-stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNA(i) to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than-average 5'untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5'UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Simulación por Computador , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Duplicación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
5.
Nucleic Acids Res ; 39(17): 7764-74, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21712243

RESUMEN

Dhh1 and Pat1 in yeast are mRNA decapping activators/translational repressors thought to play key roles in the transition of mRNAs from translation to degradation. However, little is known about the physical and functional relationships between these proteins and the translation machinery. We describe a previously unknown type of diauxic shift-dependent modulation of the intracellular locations of Dhh1 and Pat1. Like the formation of P bodies, this phenomenon changes the spatial relationship between components involved in translation and mRNA degradation. We report significant spatial separation of Dhh1 and Pat1 from ribosomes in exponentially growing cells. Moreover, biochemical analyses reveal that these proteins are excluded from polysomal complexes in exponentially growing cells, indicating that they may not be associated with active states of the translation machinery. In contrast, under diauxic growth shift conditions, Dhh1 and Pat1 are found to co-localize with polysomal complexes. This work suggests that Dhh1 and Pat1 functions are modulated by a re-localization mechanism that involves eIF4A. Pull-down experiments reveal that the intracellular binding partners of Dhh1 and Pat1 change as cells undergo the diauxic growth shift. This reveals a new dimension to the relationship between translation activity and interactions between mRNA, the translation machinery and decapping activator proteins.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/análisis , Polirribosomas/química , Proteínas de Unión al ARN/análisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis
6.
FEBS J ; 288(7): 2278-2293, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33090724

RESUMEN

Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.


Asunto(s)
Envejecimiento/genética , Factor 4F Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/genética , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Células Eucariotas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Longevidad/genética , ARN Mensajero/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética
7.
FEBS J ; 287(5): 925-940, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31520451

RESUMEN

Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m7 GpppG-capped 5'end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination. We have utilized a detailed predictive model as guidance for designing quantitative experimental interrogation of control in the yeast translation initiation pathway. We have built a synthetic orthogonal copper-responsive regulatory promoter (PCuR3 ) that is used here together with the tet07 regulatory system in a novel dual-site in vivo rate control analysis strategy. Combining this two-site strategy with calibrated mass spectrometry to determine translation factor abundance values, we have tested model-based predictions of rate control properties of the in vivo system. We conclude from the results that the components of the translation machinery that promote scanning collectively function as a low-flux-control system with a capacity to transfer ribosomes into the core process of polypeptide production that exceeds the respective capacities of the steps of polypeptide initiation, elongation and termination. In contrast, the step immediately prior to scanning, that is, ribosome recruitment via the mRNA 5' cap-binding complex, is a high-flux-control step.


Asunto(s)
ARN Mensajero/metabolismo , Ribosomas/metabolismo , Biología Computacional , Modelos Teóricos , Iniciación de la Cadena Peptídica Traduccional/fisiología , Biosíntesis de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA