Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Alloys Compd ; 8342020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32661456

RESUMEN

Aluminum alloy 7075 (Al 7075) with a T73 heat treatment is commonly used in aerospace applications due to exceptional specific strength properties. Challenges with manufacturing the material from the melt has previously limited the processing of Al 7075 via welding, casting, and additive manufacturing. Recent research has shown the capabilities of nanoparticle additives to control the solidification behavior of high-strength aluminum alloys, showcasing the first Al 7075 components processed via casting, welding, and AM. In this work, the properties of nanoparticle-enhanced aluminum 7075 are investigated on welded parts, overlays and through wire-based additive manufacturing. The hardness and tensile strength of the deposited materials were measured in the as-welded and T73 heat-treated conditions showing that the properties of Al 7075 T73 can be recovered in welded and layer-deposited parts. The work shows that Al 7075 now has the potential to be conventionally welded or additively manufactured from wire into high-strength, crack-free parts.

2.
ACS Appl Eng Mater ; 2(4): 818-828, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38737588

RESUMEN

Producing soft magnetic alloys by additive manufacturing has the potential to overcome cracking and brittle fracture issues associated with conventional thermomechanical processing. Fe-Co alloys exhibit high magnetic saturation but low ductility that makes them difficult to process by commercial methods. Ni-Fe alloys have good ductility and high permeability in comparison to Fe-Co, but they suffer from low magnetic saturation. Functional grading between Fe-Co and Ni-Fe alloys through blown powder directed energy deposition can produce soft magnetic materials that combine and enhance properties beyond the strengths of the individual magnetic materials. This work focuses on the microstructure, crystal structure, and magnetic properties of functionally graded Fe49Co49V2/Ni80Fe16Mo4 coupons. The grading between the two materials is found to refine the microstructure, thereby improving the mechanical hardness without the use of a nonmagnetic element. Postbuild thermal treatments are found to recrystallize the microstructure and increase the grain size, leading to improved magnetic properties. Analysis of crystal structures provides an understanding of the solubility limits and phase equilibria between the BCC (Fe-Co) and FCC (Ni-Fe) structures. Success in functional grading of soft magnets may provide a pathway toward improving energy conversion efficiency through strategic combinations of high saturation and high strength materials.

3.
Astrobiology ; 20(12): 1405-1412, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32924535

RESUMEN

Hydrothermal vents, which are highly plausible habitable environments for life and of interest for some origin-of-life scenarios, may exist on icy moons such as Europa or Enceladus in addition to Earth. Some hydrothermal vent chimney structures are extremely porous and friable, making their reconstruction in the lab challenging (e.g., brucite or saponite in alkaline hydrothermal settings). Here, we present the results from our efforts to reconstruct a simplified chimney structure directly out of mineral powder using binder jet additive manufacturing. Olivine sand was chosen for this initial method development effort since it represents a naturally occurring seafloor material and is inexpensively available in large quantities in powder form. The crystal structure of olivine used for the print was not modified during the process, as confirmed by powder X-ray diffraction (XRD). To characterize the microstructure of our 3D printed precipitates, we used computed tomography (CT) X-ray scan techniques. We also evaluated a chimney precipitate from a sample collected from the Prony Hydrothermal Field (PHF), southern New Caledonia, an alkaline system driven by serpentinization with mineralogy composed of brucite and carbonates. While not directly comparable from a mineralogical point of view, the microstructure and porosity of both precipitates was similar, suggesting that our 3D printing technique may be a valuable tool for future astrobiology research on hydrothermal vent precipitates.


Asunto(s)
Respiraderos Hidrotermales , Minerales/análisis , Planeta Tierra , Exobiología , Respiraderos Hidrotermales/química , Impresión Tridimensional
4.
Adv Mater ; 24(27): 3622-6, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22689017

RESUMEN

CuGaTe(2) with a chalcopyrite structure demonstrates promising thermoelectric properties. The maximum figure of merit ZT is 1.4 at 950 K. CuGaTe(2) and related chalcopyrites are a new class of high-efficiency bulk thermoelectric material for high-temperature applications.


Asunto(s)
Cobre/química , Conductividad Térmica , Calor , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA