Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Dev Biol ; 435(1): 56-72, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29355521

RESUMEN

GSK3 plays a central role in orchestrating key biological signaling pathways, including cell migration. Here, we identify GlkA as a GSK3 family kinase with functions that overlap with and are distinct from those of GskA. We show that GlkA, as previously shown for GskA, regulates the cell's cytoskeleton through MyoII assembly and control of Ras and Rap1 function, leading to aberrant cell migration. However, there are both qualitative and quantitative differences in the regulation of Ras and Rap1 and their downstream effectors, including PKB, PKBR1, and PI3K, with glkA- cells exhibiting a more severe chemotaxis phenotype than gskA- cells. Unexpectedly, the severe glkA- phenotypes, but not those of gskA-, are only exhibited when cells are grown attached to a substratum but not in suspension, suggesting that GlkA functions as a key kinase of cell attachment signaling. Using proteomic iTRAQ analysis we show that there are quantitative differences in the pattern of protein expression depending on the growth conditions in wild-type cells. We find that GlkA expression affects the cell's proteome during vegetative growth and development, with many of these changes depending on whether the cells are grown attached to a substratum or in suspension. These changes include key cytoskeletal and signaling proteins known to be essential for proper chemotaxis and signal relay during the aggregation stage of Dictyostelium development.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/enzimología , Regulación Enzimológica de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/biosíntesis , Proteínas Protozoarias/biosíntesis , Transducción de Señal/fisiología , Dictyostelium/genética , Glucógeno Sintasa Quinasa 3/genética , Proteínas Protozoarias/genética
2.
Environ Microbiol ; 20(5): 1888-1903, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29626371

RESUMEN

The migration of cells according to a diffusible chemical signal in their environment is called chemotaxis, and the slime mold Dictyostelium discoideum is widely used for the study of eukaryotic chemotaxis. Dictyostelium must sense chemicals, such as cAMP, secreted during starvation to move towards the sources of the signal. Previous work demonstrated that the gskA gene encodes the Dictyostelium homologue of glycogen synthase kinase 3 (GSK3), a highly conserved serine/threonine kinase, which plays a major role in the regulation of Dictyostelium chemotaxis. Cells lacking the GskA substrates Daydreamer and GflB exhibited chemotaxis defects less severe than those exhibited by gskA- (GskA null) cells, suggesting that additional GskA substrates might be involved in chemotaxis. Using phosphoproteomics we identify the GskA substrates PdeD, dynacortin and SogA and characterize the phenotypes of their respective null cells in response to the chemoattractant cAMP. All three chemotaxis phenotypes are defective, and in addition, we determine that carboxylesterase D2 is a common downstream effector of GskA, its direct substrates PdeD, GflB and the kinases GlkA and YakA, and that it also contributes to cell migration. Our findings identify new GskA substrates in cAMP signalling and break down the essential role of GskA in myosin II regulation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quimiotaxis/fisiología , Dictyostelium/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Protozoarias/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , Proteínas de Ciclo Celular/genética , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Secuencia Kelch , Hidrolasas Diéster Fosfóricas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Transducción de Señal/fisiología
3.
Biophys J ; 108(4): 821-832, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25692587

RESUMEN

Fast amoeboid migration requires cells to apply mechanical forces on their surroundings via transient adhesions. However, the role these forces play in controlling cell migration speed remains largely unknown. We used three-dimensional force microscopy to measure the three-dimensional forces exerted by chemotaxing Dictyostelium cells, and examined wild-type cells as well as mutants with defects in contractility, internal F-actin crosslinking, and cortical integrity. We showed that cells pull on their substrate adhesions using two distinct, yet interconnected mechanisms: axial actomyosin contractility and cortical tension. We found that the migration speed increases when axial contractility overcomes cortical tension to produce the cell shape changes needed for locomotion. We demonstrated that the three-dimensional pulling forces generated by both mechanisms are internally balanced by an increase in cytoplasmic pressure that allows cells to push on their substrate without adhering to it, and which may be relevant for amoeboid migration in complex three-dimensional environments.


Asunto(s)
Actinas/metabolismo , Actomiosina/metabolismo , Quimiotaxis , Dictyostelium/metabolismo , Citoplasma/metabolismo , Dictyostelium/fisiología
4.
J Biol Chem ; 289(7): 3950-9, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24338482

RESUMEN

Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.


Asunto(s)
Citocinesis/fisiología , Dictyostelium/enzimología , Proteolisis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Protozoarias/metabolismo , Ubiquitinación/fisiología , Proteínas ras/metabolismo , Dictyostelium/genética , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Protozoarias/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas ras/genética
5.
EMBO J ; 27(15): 2064-76, 2008 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-18636095

RESUMEN

The contractile vacuole (CV) system is the osmoregulatory organelle required for survival for many free-living cells under hypotonic conditions. We identified a new CV regulator, Disgorgin, a TBC-domain-containing protein, which translocates to the CV membrane at the late stage of CV charging and regulates CV-plasma membrane fusion and discharging. disgorgin(-) cells produce large CVs due to impaired CV-plasma membrane fusion. Disgorgin is a specific GAP for Rab8A-GTP, which also localizes to the CV and whose hydrolysis is required for discharging. We demonstrate that Drainin, a previously identified TBC-domain-containing protein, lies upstream from Disgorgin in this pathway. Unlike Disgorgin, Drainin lacks GAP activity but functions as a Rab11A effector. The BEACH family proteins LvsA and LvsD were identified in a suppressor/enhancer screen of the disgorgin(-) large CV phenotype and demonstrated to have distinct functions in regulating CV formation. Our studies help define the pathways controlling CV function.


Asunto(s)
Proteínas Contráctiles/fisiología , Dictyostelium/fisiología , Proteínas Activadoras de GTPasa/fisiología , Membranas Intracelulares/fisiología , Proteínas Protozoarias/fisiología , Vacuolas/fisiología , Animales , Proteínas Contráctiles/genética , Dictyostelium/genética , Proteínas Activadoras de GTPasa/genética , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/fisiología
6.
J Cell Biol ; 176(7): 1021-33, 2007 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-17371831

RESUMEN

We have investigated the role of Rap1 in controlling chemotaxis and cell adhesion in Dictyostelium discoideum. Rap1 is activated rapidly in response to chemoattractant stimulation, and activated Rap1 is preferentially found at the leading edge of chemotaxing cells. Cells expressing constitutively active Rap1 are highly adhesive and exhibit strong chemotaxis defects, which are partially caused by an inability to spatially and temporally regulate myosin assembly and disassembly. We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1-guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin-mediated leading edge protrusion. We suggest that Rap1/Phg2 plays a role in controlling leading edge myosin II disassembly while passively allowing myosin II assembly along the lateral sides and posterior of the cell.


Asunto(s)
Movimiento Celular/fisiología , Dictyostelium/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular/fisiología , Extensiones de la Superficie Celular/metabolismo , Extensiones de la Superficie Celular/ultraestructura , Dictyostelium/ultraestructura , Proteínas de la Membrana/metabolismo , Fosforilación , Fosfotransferasas/metabolismo
7.
J Cell Biol ; 178(2): 185-91, 2007 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-17635933

RESUMEN

Phosphoinositide 3-kinase (PI3K)gamma and Dictyostelium PI3K are activated via G protein-coupled receptors through binding to the Gbetagamma subunit and Ras. However, the mechanistic role(s) of Gbetagamma and Ras in PI3K activation remains elusive. Furthermore, the dynamics and function of PI3K activation in the absence of extracellular stimuli have not been fully investigated. We report that gbeta null cells display PI3K and Ras activation, as well as the reciprocal localization of PI3K and PTEN, which lead to local accumulation of PI(3,4,5)P(3). Simultaneous imaging analysis reveals that in the absence of extracellular stimuli, autonomous PI3K and Ras activation occur, concurrently, at the same sites where F-actin projection emerges. The loss of PI3K binding to Ras-guanosine triphosphate abolishes this PI3K activation, whereas prevention of PI3K activity suppresses autonomous Ras activation, suggesting that PI3K and Ras form a positive feedback circuit. This circuit is associated with both random cell migration and cytokinesis and may have initially evolved to control stochastic changes in the cytoskeleton.


Asunto(s)
Actinas/metabolismo , Movimiento Celular/fisiología , Proteínas de Unión al GTP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/metabolismo , Animales , Dictyostelium/citología , Dictyostelium/metabolismo , Activación Enzimática , Retroalimentación Fisiológica/fisiología , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis
8.
PLoS Comput Biol ; 7(6): e1002044, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21738453

RESUMEN

Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis/fisiología , Modelos Biológicos , Seudópodos/fisiología , Simulación por Computador , Dictyostelium/citología , Dictyostelium/fisiología , Guanosina Trifosfato , Técnicas Analíticas Microfluídicas , Transducción de Señal , Análisis de la Célula Individual , Proteínas ras
9.
Curr Biol ; 18(20): 1587-1593, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18948008

RESUMEN

Cells' ability to detect and orient themselves in chemoattractant gradients has been the subject of numerous studies, but the underlying molecular mechanisms remain largely unknown [1]. Ras activation is the earliest polarized response to chemoattractant gradients downstream from heterotrimeric G proteins in Dictyostelium, and inhibition of Ras signaling results in directional migration defects [2]. Activated Ras is enriched at the leading edge, promoting the localized activation of key chemotactic effectors, such as PI3K and TORC2 [2-5]. To investigate the role of Ras in directional sensing, we studied the effect of its misregulation by using cells with disrupted RasGAP activity. We identified an ortholog of mammalian NF1, DdNF1, as a major regulator of Ras activity in Dictyostelium. We show that disruption of nfaA leads to spatially and temporally unregulated Ras activity, causing cytokinesis and chemotaxis defects. By using unpolarized, latrunculin-treated cells, we show that tight regulation of Ras is important for gradient sensing. Together, our findings suggest that Ras is part of the cell's compass and that the RasGAP-mediated regulation of Ras activity affects directional sensing.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/fisiología , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Animales , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Dictyostelium/efectos de los fármacos , Dictyostelium/genética , Regulación de la Expresión Génica , Genes Protozoarios , Genes ras , Neurofibromina 1/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas ras/genética
10.
Dev Biol ; 328(2): 210-20, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19284976

RESUMEN

Rap1 is a key regulator of cell adhesion and cell motility in Dictyostelium. Here, we identify a Rap1-specific GAP protein (RapGAP3) and provide evidence that Rap1 signaling regulates cell-cell adhesion and cell migration within the multicellular organism. RapGAP3 mediates the deactivation of Rap1 at the late mound stage of development and plays an important role in regulating cell sorting during apical tip formation, when the anterior-posterior axis of the organism is formed, by controlling cell-cell adhesion and cell migration. The loss of RapGAP3 results in a severely altered morphogenesis of the multicellular organism at the late mound stage. Direct measurement of cell motility within the mound shows that rapGAP3(-) cells have a reduced speed of movement and, compared to wild-type cells, have a reduced motility towards the apex. rapGAP3(-) cells exhibit some increased EDTA/EGTA sensitive cell-cell adhesion at the late mound stage. RapGAP3 transiently and rapidly translocates to the cell cortex in response to chemoattractant stimulation, which is dependent on F-actin polymerization. We suggest that the altered morphogenesis and the cell-sorting defect of rapGAP3(-) cells may result in reduced directional movement of the mutant cells to the apex of the mound.


Asunto(s)
Dictyostelium/fisiología , Proteínas Activadoras de GTPasa/fisiología , Proteínas Protozoarias/fisiología , Actinas/metabolismo , Animales , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Dictyostelium/crecimiento & desarrollo , Proteínas Activadoras de GTPasa/genética , Técnicas de Inactivación de Genes , Morfogénesis/fisiología , Mutación , Proteínas Protozoarias/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rap1/metabolismo
11.
Curr Opin Genet Dev ; 16(4): 339-47, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16806895

RESUMEN

Chemotactic cells translate shallow chemoattractant gradients into a highly polarized intracellular response that includes the localized production of PI(3,4,5)P(3) on the side of the cell facing the highest chemoattractant concentration. Research over the past decade began to uncover the molecular mechanisms involved in this localized signal amplification controlling the leading edge of chemotaxing cells. These mechanisms have been shown to involve multiple positive feedback loops, in which the PI(3,4,5)P(3) signal amplifies itself independently of the original stimulus, as well as inhibitory signals that restrict PI(3,4,5)P(3) to the leading edge, thereby creating a steep intracellular PI(3,4,5)P(3) gradient. Molecules involved in positive feedback signaling at the leading edge include the small G-proteins Rac and Ras, phosphatidylinositol-3 kinase and F-actin, as part of interlinked feedback loops that lead to a robust production of PI(3,4,5)P(3).


Asunto(s)
Quimiotaxis de Leucocito , Quimiotaxis , Dictyostelium/fisiología , Retroalimentación Fisiológica , Actinas/metabolismo , Animales , Polaridad Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al GTP/metabolismo , Leucocitos/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
12.
Mol Cell Biol ; 27(10): 3817-27, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17353263

RESUMEN

The MEK and extracellular signal-regulated kinase/mitogen-activated protein kinase proteins are established regulators of multicellular development and cell movement. By combining traditional genetic and biochemical assays with a statistical analysis of global gene expression profiles, we discerned a genetic interaction between Dictyostelium discoideum mek1, smkA (named for its role in the suppression of the mek1(-) mutation), and pppC (the protein phosphatase 4 catalytic subunit gene). We found that during development and chemotaxis, both mek1 and smkA regulate pppC function. In other organisms, the protein phosphatase 4 catalytic subunit, PP4C, functions in a complex with the regulatory subunits PP4R2 and PP4R3 to control recovery from DNA damage. Here, we show that catalytically active PP4C is also required for development, chemotaxis, and the expression of numerous genes. The product of smkA (SMEK) functions as the Dictyostelium PP4R3 homolog and positively regulates a subset of PP4C's functions: PP4C-mediated developmental progression, chemotaxis, and the expression of genes specifically involved in cell stress responses and cell movement. We also demonstrate that SMEK does not control the absolute level of PP4C activity and suggest that SMEK regulates PP4C by controlling its localization to the nucleus. These data define a novel genetic pathway in which mek1 functions upstream of pppC-smkA to control multicellular development and chemotaxis.


Asunto(s)
Quimiotaxis/fisiología , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Dictyostelium/citología , Dictyostelium/genética , Epistasis Genética , Perfilación de la Expresión Génica , MAP Quinasa Quinasa 1/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfoproteínas Fosfatasas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/genética , Transducción de Señal/fisiología
13.
Dev Cell ; 4(3): 291-3, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12636911

RESUMEN

Upon starvation, individual Dictyostelium amoebae chemotax toward aggregation centers in tightly packed streams in which cells are organized in head-to-tail chains. A recent report in Cell shows that this behavior requires localization of adenylyl cyclase and the production and secretion of the chemoattractant cAMP at the posterior of individual cells. These findings suggest a relay and communication system to regulate the long-range coordinated movement of cells.


Asunto(s)
Adenilil Ciclasas/metabolismo , Comunicación Celular/fisiología , Polaridad Celular/fisiología , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/metabolismo , Animales , Señales (Psicología) , Dictyostelium/citología , Transducción de Señal/fisiología
14.
Dev Cell ; 2(6): 745-56, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12062087

RESUMEN

MEK1, which is required for aggregation and chemotaxis in Dictyostelium, is rapidly and transiently SUMOylated in response to chemoattractant stimulation. SUMOylation is required for MEK1's function and its translocation from the nucleus to the cytosol and cortex, including the leading edge of chemotaxing cells. MEK1 in which the site of SUMOylation is mutated is retained in the nucleus and does not complement the mek1 null phenotype. Constitutively active MEK1 is cytosolic and is constitutively SUMOylated, whereas the corresponding nonactivatable MEK1 is not SUMOylated and nuclear. MEK1 is also ubiquitinated in response to signaling. A MEK1-interacting, ubiquitin E3 ligase RING domain-containing protein controls nuclear localization and MEK1 ubiquitination. These studies provide a pathway regulating the localization and function of MEK1.


Asunto(s)
Quimiotaxis/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Protozoarias , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Agregación Celular , Núcleo Celular/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Dictyostelium , Humanos , Ligasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Ubiquitina-Proteína Ligasas
15.
J Cell Biol ; 167(3): 505-18, 2004 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-15534002

RESUMEN

During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P(3), the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P(3) asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal.


Asunto(s)
Polaridad Celular , Quimiotaxis , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/fisiología , Actinas/metabolismo , Animales , Dictyostelium , Retroalimentación Fisiológica , Humanos , Microscopía por Video , Transporte de Proteínas , Proteínas Protozoarias , Transducción de Señal , Proteínas ras/metabolismo
16.
FEBS Lett ; 582(14): 2075-85, 2008 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-18452713

RESUMEN

Cells have the innate ability to sense and move towards a variety of chemoattractants. We investigate the pathways by which cells sense and respond to chemoattractant gradients. We focus on the model system Dictyostelium and compare our understanding of chemotaxis in this system with recent advances made using neutrophils and other mammalian cell types, which share many molecular components and signaling pathways with Dictyostelium. This review also examines models that have been proposed to explain how cells are able to respond to small differences in ligand concentrations between the anterior leading edge and posterior of the cell. In addition, we highlight the overlapping functions of many signaling components in diverse processes beyond chemotaxis, including random cell motility and cell division.


Asunto(s)
Quimiotaxis , Dictyostelium/fisiología , Animales , División Celular , Factores Quimiotácticos/metabolismo , Dictyostelium/metabolismo , Retroalimentación Fisiológica , Humanos , Ratones , Microtúbulos/fisiología , Modelos Animales , Fosfatidilinositoles/metabolismo , Transducción de Señal
17.
Curr Opin Genet Dev ; 14(5): 540-9, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15380246

RESUMEN

Dictyostelium discoideum grow unicellularly, but develop as multicellular organisms. At two stages of development, their underlying symmetrical pattern of cellular organization becomes disrupted. During the formation of the multicellular aggregate, individual non-polarized cells re-organize their cytoskeletal structures to sequester specific intracellular signaling elements for activation by and directed movement within chemoattractant gradients. Subsequently, response to secreted morphogens directs undifferentiated populations to adopt different cell fates. Using a combination of cellular, biochemical and molecular approaches, workers have now begun to understand the mechanisms that permit Dictyostelium (and other chemotactic cells) to move directionally in shallow chemoattractant gradients and the transcriptional regulatory pathways that polarize cell-fate choice and initiate pattern formation.


Asunto(s)
Quimiotaxis , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , Morfogénesis , Transducción de Señal , Animales , AMP Cíclico/metabolismo , Dictyostelium/citología , Glucógeno Sintasa Quinasa 3/metabolismo
18.
Mol Cell Biol ; 25(17): 7839-53, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16107728

RESUMEN

MEK/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase signaling is imperative for proper chemotaxis. Dictyostelium mek1(-) (MEK1 null) and erk1(-) cells exhibit severe defects in cell polarization and directional movement, but the molecules responsible for the mek1(-) and erk1(-) chemotaxis defects are unknown. Here, we describe a novel, evolutionarily conserved gene and protein (smkA and SMEK, respectively), whose loss partially suppresses the mek1(-) chemotaxis phenotypes. SMEK also has MEK1-independent functions: SMEK, but not MEK1, is required for proper cytokinesis during vegetative growth, timely exit from the mound stage during development, and myosin II assembly. SMEK localizes to the cell cortex through an EVH1 domain at its N terminus during vegetative growth. At the onset of development, SMEK translocates to the nucleus via a nuclear localization signal (NLS) at its C terminus. The importance of SMEK's nuclear localization is demonstrated by our findings that a mutant lacking the EVH1 domain complements SMEK deficiency, whereas a mutant lacking the NLS does not. Microarray analysis reveals that some genes are precociously expressed in mek1(-) and erk1(-) cells. The misexpression of some of these genes is suppressed in the smkA deletion. These data suggest that loss of MEK1/ERK1 signaling compromises gene expression and chemotaxis in a SMEK-dependent manner.


Asunto(s)
Polaridad Celular , Quimiotaxis , Regulación de la Expresión Génica/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/deficiencia , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Núcleo Celular/metabolismo , Secuencia Conservada , Dictyostelium/citología , Dictyostelium/genética , Dictyostelium/crecimiento & desarrollo , Dictyostelium/metabolismo , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Datos de Secuencia Molecular , Mutación/genética , Miosinas/metabolismo , Fenotipo , Transporte de Proteínas , Alineación de Secuencia
19.
Biochem J ; 401(2): 377-90, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17173542

RESUMEN

Small GTPases are involved in the control of diverse cellular behaviours, including cellular growth, differentiation and motility. In addition, recent studies have revealed new roles for small GTPases in the regulation of eukaryotic chemotaxis. Efficient chemotaxis results from co-ordinated chemoattractant gradient sensing, cell polarization and cellular motility, and accumulating data suggest that small GTPase signalling plays a central role in each of these processes as well as in signal relay. The present review summarizes these recent findings, which shed light on the molecular mechanisms by which small GTPases control directed cell migration.


Asunto(s)
Movimiento Celular/fisiología , Quimiotaxis/fisiología , GTP Fosfohidrolasas/fisiología , Proteínas de Unión al GTP/fisiología , Actinas/metabolismo , Animales , Polaridad Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/fisiología , Microtúbulos/efectos de los fármacos , Microtúbulos/fisiología , Miosinas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas ras/fisiología
20.
Mol Biol Cell ; 16(5): 2191-206, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15728724

RESUMEN

The actin cytoskeleton controls the overall structure of cells and is highly polarized in chemotaxing cells, with F-actin assembled predominantly in the anterior leading edge and to a lesser degree in the cell's posterior. Wiskott-Aldrich syndrome protein (WASP) has emerged as a central player in controlling actin polymerization. We have investigated WASP function and its regulation in chemotaxing Dictyostelium cells and demonstrated the specific and essential role of WASP in organizing polarized F-actin assembly in chemotaxing cells. Cells expressing very low levels of WASP show reduced F-actin levels and significant defects in polarized F-actin assembly, resulting in an inability to establish axial polarity during chemotaxis. GFP-WASP preferentially localizes at the leading edge and uropod of chemotaxing cells and the B domain of WASP is required for the localization of WASP. We demonstrated that the B domain binds to PI(4,5)P2 and PI(3,4,5)P3 with similar affinities. The interaction between the B domain and PI(3,4,5)P3 plays an important role for the localization of WASP to the leading edge in chemotaxing cells. Our results suggest that the spatial and temporal control of WASP localization and activation is essential for the regulation of directional motility.


Asunto(s)
Actinas/metabolismo , Quimiotaxis/fisiología , Dictyostelium/metabolismo , Proteínas/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Polaridad Celular , Dictyostelium/citología , Dictyostelium/genética , Dictyostelium/fisiología , Humanos , Datos de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética , Proteínas/fisiología , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Proteína del Síndrome de Wiskott-Aldrich
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA