Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 93(4): 2062-2071, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33417431

RESUMEN

Alternating current (AC) voltammetric techniques are experimentally powerful as they enable Faradaic current to be isolated from non-Faradaic contributions. Finding the best global fit between experimental voltammetric data and simulations based on reaction models requires searching a substantial parameter space at high resolution. In this paper, we estimate parameters from purely sinusoidal voltammetry (PSV) experiments, investigating the redox reactions of a surface-confined ferrocene derivative. The advantage of PSV is that a complete experiment can be simulated relatively rapidly, compared to other AC voltammetric techniques. In one example involving thermodynamic dispersion, a PSV parameter inference effort requiring 7,500,000 simulations was completed in 7 h, whereas the same process for our previously used technique, ramped Fourier transform AC voltammetry (ramped FTACV), would have taken 4 days. Using both synthetic and experimental data with a surface confined diazonium substituted ferrocene derivative, it is shown that the PSV technique can be used to recover the key chemical and physical parameters. By applying techniques from Bayesian inference and Markov chain Monte Carlo methods, the confidence, distribution, and degree of correlation of the recovered parameters was visualized and quantified.

2.
Front Immunol ; 14: 1198996, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529036

RESUMEN

Background: Increasing evidence suggests the immune activation elicited by bacterial outer-membrane vesicles (OMVs) can initiate a potent anti-tumor immunity, facilitating the recognition and destruction of malignant cells. At present the pathways underlying this response remain poorly understood, though a role for innate-like cells such as γδ T cells has been suggested. Methods: Peripheral blood mononuclear cells (PBMCs) from healthy donors were co-cultured with E. coli MG1655 Δpal ΔlpxM OMVs and corresponding immune activation studied by cell marker expression and cytokine production. OMV-activated γδ T cells were co-cultured with cancer cell lines to determine cytotoxicity. Results: The vesicles induced a broad inflammatory response with γδ T cells observed as the predominant cell type to proliferate post-OMV challenge. Notably, the majority of γδ T cells were of the Vγ9Vδ2 type, known to respond to both bacterial metabolites and stress markers present on tumor cells. We observed robust cytolytic activity of Vγ9Vδ2 T cells against both breast and leukaemia cell lines (SkBr3 and Nalm6 respectively) after OMV-mediated expansion. Conclusions: Our findings identify for the first time, that OMV-challenge stimulates the expansion of Vγ9Vδ2 T cells which subsequently present anti-tumor capabilities. We propose that OMV-mediated immune activation leverages the anti-microbial/anti-tumor capacity of Vγ9Vδ2 T cells, an axis amenable for improved future therapeutics.


Asunto(s)
Vesículas Extracelulares , Linfocitos T , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Leucocitos Mononucleares/metabolismo , Escherichia coli/metabolismo , Vesículas Extracelulares/metabolismo
3.
Expert Opin Drug Deliv ; 16(10): 1081-1094, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31478752

RESUMEN

Introduction: Three-dimensional (3D) printing is a relatively new, rapid manufacturing technology that has found promising applications in the drug delivery and medical sectors. Arguably, never before has the healthcare industry experienced such a transformative technology. This review aims to discuss the state of the art of 3D printing technology in healthcare and drug delivery. Areas covered: The current and future applications of printing technologies within drug delivery and medicine have been discussed. The latest innovations in 3D printing of customized medical devices, drug-eluting implants, and printlets (3D-printed tablets) with a tailored dose, shape, size, and release characteristics have been covered. The review also covers the state of the art of 3D printing in healthcare (covering topics such as dentistry, surgical and bioprinting of patient-specific organs), as well as the potential of recent innovations, such as 4D printing, to shape the future of drug delivery and to improve treatment pathways for patients. Expert opinion: A future perspective is provided on the potential for 3D printing in healthcare, covering strategies to overcome the major barriers to integration that are faced today.


Asunto(s)
Atención a la Salud/métodos , Sistemas de Liberación de Medicamentos/tendencias , Impresión Tridimensional/tendencias , Animales , Humanos , Medicina de Precisión , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA