RESUMEN
The presence of pharmaceuticals in aqueous environmental matrices often requires efficient and selective preconcentration procedures. Thus, silicas (SILs) were synthesized by a molecular imprinting technique using an acid-catalyzed sol-gel process and the following drugs as templates: fluoxetine, gentamicin, lidocaine, morphine, nifedipine, paracetamol, and tetracycline. The materials were subjected to sorbent extraction assisted by ultrasonic treatment to remove the drugs and the consequent formation of molecular imprinted cavities. The surface area of the resulting materials ranged from 290 to 960 m(2)/g. Adsorption tests were performed with the molecular imprinting phases. In terms of the potential selectivity, the SILs were subjected to the adsorption of drugs from samples such as potable and surface water. The adsorption capacity remained in the range between 55 and 65% for both matrices, while for the nonimprinted SIL it remained between 15 and 20%.
Asunto(s)
Preparaciones Farmacéuticas/aislamiento & purificación , Polímeros/química , Dióxido de Silicio/química , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Impresión Molecular , Preparaciones Farmacéuticas/química , Polímeros/síntesis química , Dióxido de Silicio/síntesis química , Extracción en Fase Sólida/instrumentación , Contaminantes Químicos del Agua/químicaRESUMEN
In the research reported in this paper, membrane distillation was employed to recover water from a concentrated saline petrochemical effluent. According to the results, the use of membrane distillation is technically feasible when pre-treatments are employed to mitigate fouling. A mathematical model was used to evaluate the fouling mechanism, showing that the deposition of particulate and precipitated material occurred in all tests; however, the fouling dynamic depends on the pre-treatment employed (filtration, or filtration associated with a pH adjustment). The deposit layer formed by particles is not cohesive, allowing its entrainment to the bulk flow. The precipitate fouling showed a minimal tendency to entrainment. Also, precipitate fouling served as a coupling agent among adjacent particles, increasing the fouling layer cohesion.