Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 102: 103451, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794880

RESUMEN

Globoid cell leukodystrophy (GLD, Krabbe disease, Krabbe's disease) is caused by genetic mutations in the gene encoding, galactosylceramidase (GALC). Deficiency of this enzyme results in central and peripheral nervous system pathology, and is characterized by loss of myelin and an infiltration of globoid cells. The canine model of GLD provides a translational model which faithfully recapitulates much of the human disease pathology. Targeted lipidomic analysis was conducted in serum and cerebrospinal fluid (CSF) over the lifetime of GLD affected and normal canines, and in brain tissue at humane endpoint to better understand disease progression and identify potential biomarkers of disease. Psychosine, a substrate of GALC and primary contributor to the pathology in GLD, was observed to be significantly elevated in the serum and CSF by 2 or 4 weeks of age, respectively, and steadily increased over the lifetime of affected animals. Importantly, psychosine concentration strongly correlated with disease severity. Galactosylceramide, glucosylceramide, and lactosylceramide were also found to be elevated in the CSF of affected animals and increased with age. Psychosine and galactosylceramide were found to be significantly increased in brain tissue at humane endpoint. This study identified several biomarkers which may be useful in the development of therapeutics for GLD.


Asunto(s)
Enfermedades de los Perros/líquido cefalorraquídeo , Galactosilceramidas/sangre , Galactosilceramidas/líquido cefalorraquídeo , Leucodistrofia de Células Globoides/veterinaria , Psicosina/líquido cefalorraquídeo , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Enfermedades de los Perros/sangre , Enfermedades de los Perros/patología , Perros , Femenino , Leucodistrofia de Células Globoides/sangre , Leucodistrofia de Células Globoides/líquido cefalorraquídeo , Leucodistrofia de Células Globoides/patología , Masculino , Psicosina/sangre
2.
J Neuropathol Exp Neurol ; 77(3): 229-245, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346563

RESUMEN

The feline model of Niemann-Pick disease, type C1 (NPC1) recapitulates the clinical, neuropathological, and biochemical abnormalities present in children with NPC1. The hallmarks of disease are the lysosomal storage of unesterified cholesterol and multiple sphingolipids in neurons, and the spatial and temporal distribution of Purkinje cell death. In feline NPC1 brain, microtubule-associated protein 1 light chain 3 (LC3) accumulations, indicating autophagosomes, were found within axons and presynaptic terminals. High densities of accumulated LC3 were seen in subdivisions of the inferior olive, which project to cerebellar regions that show the most Purkinje cell loss, suggesting that autophagic abnormalities in specific climbing fibers may contribute to the spatial pattern of Purkinje cell loss seen. Biweekly intrathecal administration of 2-hydroxypropyl-beta cyclodextrin (HPßCD) ameliorated neurological dysfunction, reduced cholesterol and sphingolipid accumulation, and increased lifespan in NPC1 cats. LC3 pathology was reduced in treated animals suggesting that HPßCD administration also ameliorates autophagic abnormalities. This study is the first to (i) identify specific brain regions exhibiting autophagic abnormalities in any species with NPC1, (ii) provide evidence of differential vulnerability among discrete brain nuclei and pathways, and (iii) show the amelioration of these abnormalities in NPC1 cats treated with HPßCD.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Núcleo Olivar/metabolismo , Núcleo Olivar/patología , Células de Purkinje/patología , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , Animales , Calbindinas/metabolismo , Gatos/genética , Modelos Animales de Enfermedad , Mutación/genética , Proteína Niemann-Pick C1/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA