Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Environ Qual ; 47(4): 830-838, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30025065

RESUMEN

Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice ( L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g (range: <0.007-2.1 ng g). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76-110 ng m) and THg (1947-7224 ng m) during the growing season, and net exporters of MeHg (35-200 ng m) and THg (248-6496 ng m) during the fallow season. At harvest, 190 to 700 ng MeHg m and 1400 to 1700 ng THg m were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m and 7000-10,500 ng m THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.


Asunto(s)
Compuestos de Metilmercurio/análisis , Oryza , Contaminantes Químicos del Agua/análisis , California , Monitoreo del Ambiente , Mercurio , Compuestos de Metilmercurio/química , Suelo , Contaminantes Químicos del Agua/química
2.
J Environ Qual ; 46(1): 133-142, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28177412

RESUMEN

Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice ( L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L, range 0.15-0.23 ng L) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L, range 0.6-1.6 ng L) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.


Asunto(s)
Agricultura , Compuestos de Metilmercurio/análisis , Oryza , Contaminantes Químicos del Agua/análisis , California , Monitoreo del Ambiente , Mercurio , Ríos
3.
Environ Sci Technol ; 49(10): 6304-11, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25893963

RESUMEN

Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Mercurio/aislamiento & purificación , Compuestos de Metilmercurio/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Humedales , Animales , California , Coagulantes , Peces , Mercurio/análisis , Mercurio/química , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
4.
J Environ Qual ; 53(3): 327-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468600

RESUMEN

Methylmercury (MeHg) is a human and environmental toxin produced in flooded soils. Little is known about MeHg in rice (Oryza Sativa L.) fields in Sacramento Valley, California. The objectives of this study were to quantify mercury fractions in irrigation water and within rice fields and to determine their mercury pools in surface water, soil, and grain. Soil, grain, and surface water (dissolved and particulate) MeHg and total mercury (THg) were monitored in six commercial rice fields throughout a winter fallow season and subsequent growing season. Both dissolved and particulate mercury fractions were higher in fallow season rice field water. Total suspended solids and particulate mercury concentrations were positively correlated (r = 0.99 and 0.98 for THg and MeHg, respectively), suggesting that soil MeHg was suspended in the water column and potentially exported. Dissolved THg and MeHg concentrations were positively correlated with absorbance at 254 nm (r = 0.47 and 0.58, respectively) in fallow season field water. In the growing season, fields with higher irrigation water MeHg concentrations (due to recycled water use) had elevated field-water MeHg (r = 0.86) and grain MeHg concentrations (r = 0.96). Based on a mass balance analysis, soil mercury pools were orders of magnitude larger than surface water or grain mercury pools; however, fallow season drainage and grain harvest were the primary pathways for MeHg export. Based on these findings, reducing (1) discharge when water is turbid, (2) straw inputs, and (3) use of recycled irrigation water could help reduce mercury exports in rice field drainage water.


Asunto(s)
Riego Agrícola , Monitoreo del Ambiente , Mercurio , Oryza , Contaminantes del Suelo , Suelo , Contaminantes Químicos del Agua , Mercurio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , California , Compuestos de Metilmercurio/análisis
5.
Sci Total Environ ; 954: 174939, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059670

RESUMEN

Wastewater treatment plant (WWTP) discharges can be a source of organic contaminants, including pesticides, to rivers. An integrated model was developed for the Potomac River watershed (PRW) to determine the amount of accumulated wastewater percentage of streamflow (ACCWW) and calculate predicted environmental concentrations (PECs) for 14 pesticides in non-tidal National Hydrography Dataset Plus Version 2.1 stream segments. Predicted environmental concentrations were compared to measured environmental concentrations (MECs) from 32 stream sites that represented a range of ACCWW and land use to evaluate model performance and to assess possible non-WWTP loading sources. Statistical agreement between PECs and MECs was strongest for insecticides, followed by fungicides and herbicides. Principal component analysis utilizing optical fluorescence and ancillary water quality data identified wastewater and urban runoff sources. Pesticides that indicated relatively larger sources from WWTPs included dinotefuran, fipronil, carbendazim, thiabendazole, and prometon whereas imidacloprid, azoxystrobin, propiconazole, tebuconazole, and diuron were more related to urban runoff. In addition, PECs generally comprised a low proportion of MECs, which indicates possible dominant loading sources beyond WWTP discharges. Cumulative potential toxicity was higher for sites with greater ACCWW and/or located in developed areas. Imidacloprid, fipronil, and carbendazim accounted for the largest portion of predicted potential toxicity across sites. The chronic aquatic life toxicity benchmarks for freshwater invertebrates were exceeded for 82 % of the imidacloprid detections (n = 28) and 47 % of the fipronil detections (n = 19). These results highlight the ecological implications of pesticide contamination from WWTP discharges and also the potential legacy effects from accumulated soil and groundwater sources. Pesticide management strategies that mitigate both current and historical impacts may improve the health of aquatic ecosystems.

6.
Environ Toxicol Chem ; 38(10): 2178-2196, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31343757

RESUMEN

Wetland environments provide numerous ecosystem services but also facilitate methylmercury (MeHg) production and bioaccumulation. We developed a wetland-management technique to reduce MeHg concentrations in wetland fish and water. We physically modified seasonal wetlands by constructing open- and deep-water treatment cells at the downstream end of seasonal wetlands to promote naturally occurring MeHg-removal processes. We assessed the effectiveness of reducing mercury (Hg) concentrations in surface water and western mosquitofish that were caged at specific locations within 4 control and 4 treatment wetlands. Methylmercury concentrations in wetland water were successfully decreased within treatment cells during only the third year of study; however, treatment cells were not effective for reducing total Hg concentrations. Furthermore, treatment cells were not effective for reducing total Hg concentrations in wetland fish. Mercury concentrations in fish were not correlated with total Hg concentrations in filtered, particulate, or whole water; and the slope of the correlation with water MeHg concentrations differed between months. Fish total Hg concentrations were weakly correlated with water MeHg concentrations in April when fish were introduced into cages but were not correlated in May when fish were retrieved from cages. Fish total Hg concentrations were greater in treatment wetlands than in control wetlands the year after the treatment wetlands' construction but declined by the second year. During the third year, fish total Hg concentrations increased in both control and treatment wetlands after an unexpected regional flooding event. Overall, we found limited support for the use of open- and deep-water treatment cells at the downstream end of wetlands to reduce MeHg concentrations in water but not fish. We suggest that additional evaluation over a longer period of time is necessary. Environ Toxicol Chem 2019;38:2178-2196. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America..


Asunto(s)
Bioacumulación , Peces/fisiología , Compuestos de Metilmercurio/análisis , Humedales , Animales , Peso Corporal/efectos de los fármacos , Monitoreo del Ambiente , Inundaciones , Compuestos de Metilmercurio/toxicidad , Estaciones del Año , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 568: 727-738, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27130329

RESUMEN

Large-scale assessments are valuable in identifying primary factors controlling total mercury (THg) and monomethyl mercury (MeHg) concentrations, and distribution in aquatic ecosystems. Bed sediment THg and MeHg concentrations were compiled for >16,000 samples collected from aquatic habitats throughout the West between 1965 and 2013. The influence of aquatic feature type (canals, estuaries, lakes, and streams), and environmental setting (agriculture, forest, open-water, range, wetland, and urban) on THg and MeHg concentrations was examined. THg concentrations were highest in lake (29.3±6.5µgkg(-1)) and canal (28.6±6.9µgkg(-1)) sites, and lowest in stream (20.7±4.6µgkg(-1)) and estuarine (23.6±5.6µgkg(-1)) sites, which was partially a result of differences in grain size related to hydrologic gradients. By environmental setting, open-water (36.8±2.2µgkg(-1)) and forested (32.0±2.7µgkg(-1)) sites generally had the highest THg concentrations, followed by wetland sites (28.9±1.7µgkg(-1)), rangeland (25.5±1.5µgkg(-1)), agriculture (23.4±2.0µgkg(-1)), and urban (22.7±2.1µgkg(-1)) sites. MeHg concentrations also were highest in lakes (0.55±0.05µgkg(-1)) and canals (0.54±0.11µgkg(-1)), but, in contrast to THg, MeHg concentrations were lowest in open-water sites (0.22±0.03µgkg(-1)). The median percent MeHg (relative to THg) for the western region was 0.7%, indicating an overall low methylation efficiency; however, a significant subset of data (n>100) had percentages that represent elevated methylation efficiency (>6%). MeHg concentrations were weakly correlated with THg (r(2)=0.25) across western North America. Overall, these results highlight the large spatial variability in sediment THg and MeHg concentrations throughout western North America and underscore the important roles that landscape and land-use characteristics have on the MeHg cycle.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Territorios del Noroeste , Noroeste de Estados Unidos
8.
Sci Total Environ ; 568: 1171-1184, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27102274

RESUMEN

Methylmercury contamination of fish is a global threat to environmental health. Mercury (Hg) monitoring programs are valuable for generating data that can be compiled for spatially broad syntheses to identify emergent ecosystem properties that influence fish Hg bioaccumulation. Fish total Hg (THg) concentrations were evaluated across the Western United States (US) and Canada, a region defined by extreme gradients in habitat structure and water management. A database was compiled with THg concentrations in 96,310 fish that comprised 206 species from 4262 locations, and used to evaluate the spatial distribution of fish THg across the region and effects of species, foraging guilds, habitats, and ecoregions. Areas of elevated THg exposure were identified by developing a relativized estimate of fish mercury concentrations at a watershed scale that accounted for the variability associated with fish species, fish size, and site effects. THg concentrations in fish muscle ranged between 0.001 and 28.4 (µg/g wet weight (ww)) with a geometric mean of 0.17. Overall, 30% of individual fish samples and 17% of means by location exceeded the 0.30µg/g ww US EPA fish tissue criterion. Fish THg concentrations differed among habitat types, with riverine habitats consistently higher than lacustrine habitats. Importantly, fish THg concentrations were not correlated with sediment THg concentrations at a watershed scale, but were weakly correlated with sediment MeHg concentrations, suggesting that factors influencing MeHg production may be more important than inorganic Hg loading for determining fish MeHg exposure. There was large heterogeneity in fish THg concentrations across the landscape; THg concentrations were generally higher in semi-arid and arid regions such as the Great Basin and Desert Southwest, than in temperate forests. Results suggest that fish mercury exposure is widespread throughout Western US and Canada, and that species, habitat type, and region play an important role in influencing ecological risk of mercury in aquatic ecosystems.


Asunto(s)
Exposición a Riesgos Ambientales , Peces/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Canadá , Ecosistema , Monitoreo del Ambiente , Agua Dulce , Estados Unidos
9.
Sci Total Environ ; 568: 1213-1226, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27320732

RESUMEN

Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.


Asunto(s)
Contaminantes Ambientales/metabolismo , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Vertebrados/metabolismo , Animales , Canadá , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Peces/metabolismo , Mercurio/análisis , Compuestos de Metilmercurio/análisis , México , Estados Unidos
10.
Sci Total Environ ; 484: 263-75, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23642571

RESUMEN

Monomethyl mercury (MeHg) is a potent neurotoxin that threatens ecosystem viability and human health. In aquatic systems, the photolytic degradation of MeHg (photodemethylation) is an important component of the MeHg cycle. Dissolved organic matter (DOM) is also affected by exposure to solar radiation (light exposure) leading to changes in DOM composition that can affect its role in overall mercury (Hg) cycling. This study investigated changes in MeHg concentration, DOM concentration, and the optical signature of DOM caused by light exposure in a controlled field-based experiment using water samples collected from wetlands and rice fields. Filtered water from all sites showed a marked loss in MeHg concentration after light exposure. The rate of photodemethylation was 7.5×10(-3)m(2)mol(-1) (s.d. 3.5×10(-3)) across all sites despite marked differences in DOM concentration and composition. Light exposure also caused changes in the optical signature of the DOM despite there being no change in DOM concentration, indicating specific structures within the DOM were affected by light exposure at different rates. MeHg concentrations were related to optical signatures of labile DOM whereas the percent loss of MeHg was related to optical signatures of less labile, humic DOM. Relationships between the loss of MeHg and specific areas of the DOM optical signature indicated that aromatic and quinoid structures within the DOM were the likely contributors to MeHg degradation, perhaps within the sphere of the Hg-DOM bond. Because MeHg photodegradation rates are relatively constant across freshwater habitats with natural Hg-DOM ratios, physical characteristics such as shading and hydrologic residence time largely determine the relative importance of photolytic processes on the MeHg budget in these mixed vegetated and open-water systems.


Asunto(s)
Monitoreo del Ambiente , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/química , Mercurio/análisis , Mercurio/química , Compuestos de Metilmercurio/química , Modelos Químicos , Fotólisis , Contaminantes Químicos del Agua/análisis , Humedales
11.
Sci Total Environ ; 484: 308-18, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23809880

RESUMEN

Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~3months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio=27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2ng gdw(-1), respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r=0.90, p<0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through increased hydrologic and biotic export.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , California , Metilación , Compuestos de Metilmercurio/análisis , Estaciones del Año , Humedales
12.
Sci Total Environ ; 484: 288-99, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24188689

RESUMEN

As part of a larger study of mercury (Hg) biogeochemistry and bioaccumulation in agricultural (rice growing) and non-agricultural wetlands in California's Central Valley, USA, seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment. Three types of shallowly-flooded agricultural wetlands (white rice, wild rice, and fallow fields) and two types of managed (non-agricultural) wetlands (permanently and seasonally flooded) were sampled monthly-to-seasonally. Dynamic seasonal changes in readily reducible 'reactive' mercury (Hg(II)R), Hg(II)-methylation rate constants (kmeth), and concentrations of electron acceptors (sulfate and ferric iron) and donors (acetate), were all observed in response to field management hydrology, whereas seasonal changes in these parameters were more muted in non-agricultural managed wetlands. Agricultural wetlands exhibited higher sediment MeHg concentrations than did non-agricultural wetlands, particularly during the fall through late-winter (post-harvest) period. Both sulfate- and iron-reducing bacteria have been implicated in MeHg production, and both were demonstrably active in all wetlands studied. Stoichiometric calculations suggest that iron-reducing bacteria dominated carbon flow in agricultural wetlands during the growing season. Sulfate-reducing bacteria were not stimulated by the addition of sulfate-based fertilizer to agricultural wetlands during the growing season, suggesting that labile organic matter, rather than sulfate, limited their activity in these wetlands. Along the continuum of sediment geochemical conditions observed, values of kmeth increased approximately 10,000-fold, whereas Hg(II)R decreased 100-fold. This suggests that, with respect to the often opposing trends of Hg(II)-methylating microbial activity and Hg(II) availability for methylation, microbial activity dominated the Hg(II)-methylation process, and that along this biogeochemical continuum, conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates. Rice straw management options aimed at limiting labile carbon supplies to surface sediment during the post-harvest fall-winter period may be effective in limiting MeHg production within agricultural wetlands.


Asunto(s)
Agricultura , Sedimentos Geológicos/química , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Humedales , California , Monitoreo del Ambiente , Mercurio/análisis , Estaciones del Año
13.
Sci Total Environ ; 484: 276-87, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24332791

RESUMEN

The seasonal and spatial variability of water quality, including mercury species, was evaluated in agricultural and managed, non-agricultural wetlands in the Yolo Bypass Wildlife Area, an area managed for multiple beneficial uses including bird habitat and rice farming. The study was conducted during an 11-month period (June 2007 to April 2008) that included a summer growing season and flooded conditions during winter. Methylmercury (MeHg) concentrations in surface water varied over a wide range (0.1 to 37ngL(-1) unfiltered; 0.04 to 7.3ngL(-1) filtered). Maximum MeHg values are among the highest ever recorded in wetlands. Highest MeHg concentrations in unfiltered surface water were observed in drainage from wild rice fields during harvest (September 2007), and in white rice fields with decomposing rice straw during regional flooding (February 2008). The ratio of MeHg to total mercury (MeHg/THg) increased about 20-fold in both unfiltered and filtered water during the growing season (June to August 2007) in the white and wild rice fields, and about 5-fold in fallow fields (July to August 2007), while there was little to no change in MeHg/THg in the permanent wetland. Sulfate-bearing fertilizer had no effect on Hg(II) methylation, as sulfate-reducing bacteria were not sulfate-limited in these agricultural wetlands. Concentrations of MeHg in filtered and unfiltered water correlated with filtered Fe, filtered Mn, DOC, and two indicators of sulfate reduction: the SO4(2-)/Cl(-) ratio, and δ(34)S in aqueous sulfate. These relationships suggest that microbial reduction of SO4(2-), Fe(III), and possibly Mn(IV) may contribute to net Hg(II)-methylation in this setting.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Humedales , California
14.
Sci Total Environ ; 484: 221-31, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24530187

RESUMEN

With seasonal wetting and drying, and high biological productivity, agricultural wetlands (rice paddies) may enhance the conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg), the more toxic, organic form that biomagnifies through food webs. Yet, the net balance of MeHg sources and sinks in seasonal wetland environments is poorly understood because it requires an annual, integrated assessment across biota, sediment, and water components. We examined a suite of wetlands managed for rice crops or wildlife during 2007-2008 in California's Central Valley, in an area affected by Hg contamination from historic mining practices. Hydrologic management of agricultural wetlands for rice, wild rice, or fallowed - drying for field preparation and harvest, and flooding for crop growth and post-harvest rice straw decay - led to pronounced seasonality in sediment and aqueous MeHg concentrations that were up to 95-fold higher than those measured concurrently in adjacent, non-agricultural permanently-flooded and seasonally-flooded wetlands. Flooding promoted microbial MeHg production in surface sediment of all wetlands, but extended water residence time appeared to preferentially enhance MeHg degradation and storage. When incoming MeHg loads were elevated, individual fields often served as a MeHg sink, rather than a source. Slow, horizontal flow of shallow water in the agricultural wetlands led to increased importance of vertical hydrologic fluxes, including evapoconcentration of surface water MeHg and transpiration-driven advection into the root zone, promoting temporary soil storage of MeHg. Although this hydrology limited MeHg export from wetlands, it also increased MeHg exposure to resident fish via greater in situ aqueous MeHg concentrations. Our results suggest that the combined traits of agricultural wetlands - slow-moving shallow water, manipulated flooding and drying, abundant labile plant matter, and management for wildlife - may enhance microbial methylation of Hg(II) and MeHg exposure to local biota, as well as export to downstream habitats during uncontrolled winter-flow events.


Asunto(s)
Agricultura , Fenómenos Ecológicos y Ambientales , Monitoreo del Ambiente , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Humedales , California , Cadena Alimentaria , Hidrología
15.
Sci Total Environ ; 409(3): 631-7, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21075424

RESUMEN

The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Agua Dulce/química , Mercurio/química , Compuestos de Metilmercurio/química , Contaminantes Químicos del Agua/química , Carbono/análisis , Carbono/química , Mercurio/análisis , Metales/química , Compuestos de Metilmercurio/análisis , Sales (Química)/química , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA