Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(3): 475-503, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37909340

RESUMEN

Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.


Asunto(s)
Lesiones Encefálicas , Nacimiento Prematuro , Lactante , Embarazo , Animales , Femenino , Recién Nacido , Humanos , Recien Nacido Prematuro , Neuroglía , Encéfalo
2.
Dev Neurosci ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717575

RESUMEN

Understanding the long-term functional implications of gut microbial communities during the perinatal period is a bourgeoning area of research. Numerous studies have revealed the existence of a "gut-brain axis" and the impact of an alteration of gut microbiota composition in brain diseases. Recent research has highlighted how gut microbiota could affect brain development and behavior. Many factors in early life such as the mode of delivery or preterm birth could lead to disturbance in the assembly and maturation of gut microbiota. Notably, global rates of cesarean sections (C-sections) have increased in recent decades and remain important when considering premature delivery. Both preterm birth and C-sections are associated with an increased risk of neurodevelopmental disorders such as autism spectrum disorders; with neuroinflammation a major risk factor. In this review, we explore links between preterm birth by C-sections, gut microbiota alteration, and neuroinflammation. We also highlight C-sections as a risk factor for developmental disorders due to alterations in the microbiome.

3.
Ann Neurol ; 91(1): 48-65, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34741343

RESUMEN

OBJECTIVES: In the premature newborn, perinatal inflammation mediated by microglia contributes significantly to neurodevelopmental injuries including white matter injury (WMI). Brain inflammation alters development through neuroinflammatory processes mediated by activation of homeostatic microglia toward a pro-inflammatory and neurotoxic phenotype. Investigating immune regulators of microglial activation is crucial to find effective strategies to prevent and treat WMI. METHODS: Ex vivo microglial cultures and a mouse model of WMI induced by perinatal inflammation (interleukin-1-beta [IL-1ß] and postnatal days 1-5) were used to uncover and elucidate the role of microRNA-146b-5p in microglial activation and WMI. RESULTS: A specific reduction in vivo in microglia of Dicer, a protein required for microRNAs maturation, reduces pro-inflammatory activation of microglia and prevents hypomyelination in our model of WMI. Microglial miRNome analysis in the WMI model identified miRNA-146b-5p as a candidate modulator of microglial activation. Ex vivo microglial cell culture treated with the pro-inflammatory stimulus lipopolysaccharide (LPS) led to overexpression of immunomodulatory miRNA-146b-5p but its drastic reduction in the microglial extracellular vesicles (EVs). To increase miRNA-146b-5p expression, we used a 3DNA nanocarrier to deliver synthetic miRNA-146b-5p specifically to microglia. Enhancing microglial miRNA-146b-5p overexpression significantly decreased LPS-induced activation, downregulated IRAK1, and restored miRNA-146b-5p levels in EVs. In our WMI model, 3DNA miRNA-146b-5p treatment significantly prevented microglial activation, hypomyelination, and cognitive defect induced by perinatal inflammation. INTERPRETATIONS: These findings support that miRNA-146b-5p is a major regulator of microglia phenotype and could be targeted to reduce the incidence and the severity of perinatal brain injuries and their long-term consequences. ANN NEUROL 2022;91:48-65.


Asunto(s)
Encéfalo/patología , MicroARNs/metabolismo , Microglía/patología , Sustancia Blanca/patología , Animales , Ratones , Neurogénesis/fisiología
4.
Pediatr Res ; 94(5): 1631-1638, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37380752

RESUMEN

Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.


Asunto(s)
Células Madre Mesenquimatosas , Placenta , Recién Nacido , Lactante , Humanos , Femenino , Embarazo , Recien Nacido Prematuro
5.
Glia ; 70(9): 1699-1719, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35579329

RESUMEN

Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1ß, we sought to uncover causes of cerebellar damage. In this model, IL-1ß is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1ß treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1ß leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.


Asunto(s)
Enfermedades Cerebelosas , Enfermedades del Prematuro , Inflamación , Interferón Tipo I , Interleucina-1beta , Microglía , Animales , Encefalopatías/inducido químicamente , Encefalopatías/inmunología , Encefalopatías/patología , Enfermedades Cerebelosas/inducido químicamente , Enfermedades Cerebelosas/inmunología , Enfermedades Cerebelosas/patología , Cerebelo/efectos de los fármacos , Cerebelo/inmunología , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Enfermedades del Prematuro/inducido químicamente , Enfermedades del Prematuro/inmunología , Enfermedades del Prematuro/patología , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Interferón Tipo I/inmunología , Interleucina-1beta/efectos adversos , Interleucina-1beta/farmacología , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/patología , Embarazo
6.
Pediatr Res ; 92(2): 403-414, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35505079

RESUMEN

BACKGROUND: Intraventricular hemorrhage causes significant lifelong mortality and morbidity, especially in preterm born infants. Progress in finding an effective therapy is stymied by a lack of preterm animal models with long-term follow-up. This study addresses this unmet need, using an established model of preterm rabbit IVH and analyzing outcomes out to 1 month of age. METHODS: Rabbit pups were delivered preterm and administered intraperitoneal injection of glycerol at 3 h of life and approximately 58% developed IVH. Neurobehavioral assessment was performed at 1 month of age followed by immunohistochemical labeling of epitopes for neurons, synapses, myelination, and interneurons, analyzed by means of digital quantitation and assessed via two-way ANOVA or Student's t test. RESULTS: IVH pups had globally reduced myelin content, an aberrant cortical myelination microstructure, and thinner upper cortical layers (I-III). We also observed a lower number of parvalbumin (PV)-positive interneurons in deeper cortical layers (IV-VI) in IVH animals and reduced numbers of neurons, synapses, and microglia. However, there were no discernable changes in behaviors. CONCLUSIONS: We have established in this preterm pup model that long-term changes after IVH include significant wide-ranging alterations to cortical organization and microstructure. Further work to improve the sensitivity of neurocognitive testing in this species at this age may be required. IMPACT: This study uses an established animal model of preterm birth, in which the rabbit pups are truly born preterm, with reduced organ maturation and deprivation of maternally supplied trophic factors. This is the first study in preterm rabbits that explores the impacts of severe intraventricular hemorrhage beyond 14 days, out to 1 month of age. Our finding of persisting but subtle global changes including brain white and gray matter will have impact on our understanding of the best path for therapy design and interventions.


Asunto(s)
Enfermedades del Prematuro , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Hemorragia Cerebral , Epítopos , Femenino , Glicerol , Humanos , Recién Nacido , Parvalbúminas , Conejos
7.
Pediatr Res ; 91(6): 1416-1427, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34050269

RESUMEN

BACKGROUND: Perinatal inflammation combined with hypoxia-ischemia (HI) exacerbates injury in the developing brain. Therapeutic hypothermia (HT) is standard care for neonatal encephalopathy; however, its benefit in inflammation-sensitized HI (IS-HI) is unknown. METHODS: Twelve newborn piglets received a 2 µg/kg bolus and 1 µg/kg/h infusion over 52 h of Escherichia coli lipopolysaccharide (LPS). HI was induced 4 h after LPS bolus. After HI, piglets were randomized to HT (33.5 °C 1-25 h after HI, n = 6) or normothermia (NT, n = 6). Amplitude-integrated electroencephalogram (aEEG) was recorded and magnetic resonance spectroscopy (MRS) was acquired at 24 and 48 h. At 48 h, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive brain cell death, microglial activation/proliferation, astrogliosis, and cleaved caspase-3 (CC3) were quantified. Hematology and plasma cytokines were serially measured. RESULTS: Two HT piglets died. aEEG recovery, thalamic and white matter MRS lactate/N-acetylaspartate, and TUNEL-positive cell death were similar between groups. HT increased microglial activation in the caudate, but had no other effect on glial activation/proliferation. HT reduced CC3 overall. HT suppressed platelet count and attenuated leukocytosis. Cytokine profile was unchanged by HT. CONCLUSIONS: We did not observe protection with HT in this piglet IS-HI model based on aEEG, MRS, and immunohistochemistry. Immunosuppressive effects of HT and countering neuroinflammation by LPS may contribute to the observed lack of HT efficacy. Other immunomodulatory strategies may be more effective in IS-HI. IMPACT: Acute infection/inflammation is known to exacerbate perinatal brain injury and can worsen the outcomes in neonatal encephalopathy. Therapeutic HT is the current standard of care for all infants with NE, but the benefit in infants with coinfection/inflammation is unknown. In a piglet model of inflammation (LPS)-sensitized HI, we observed no evidence of neuroprotection with cooling for 24 h, based on our primary outcome measures: aEEG, MRS Lac/NAA, and histological brain cell death. Additional neuroprotective agents, with beneficial immunomodulatory effects, require exploration in IS-HI models.


Asunto(s)
Hipotermia Inducida , Hipotermia , Hipoxia-Isquemia Encefálica , Animales , Animales Recién Nacidos , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Hipotermia/patología , Hipotermia Inducida/métodos , Hipoxia , Inflamación/patología , Isquemia/patología , Lipopolisacáridos , Porcinos
8.
J Neurochem ; 158(1): 59-73, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33314066

RESUMEN

Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury. Mesenchymal stem cells have immunomodulatory action and exert mitoprotective effects which attenuate production of reactive oxygen species and promote restoration of tissue function and metabolism after perinatal insults. This review summarizes the present state, the underlying causes, challenges and possibilities for effective clinical translation of mesenchymal stem cell therapy.


Asunto(s)
Lesiones Encefálicas/congénito , Lesiones Encefálicas/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Neuroprotección , Animales , Animales Recién Nacidos , Lesiones Encefálicas/inmunología , Humanos , Recién Nacido , Inflamación/inmunología , Inflamación/patología , Inflamación/terapia
9.
Pediatr Res ; 89(3): 464-475, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32521540

RESUMEN

BACKGROUND: Exposure to inflammation exacerbates injury in neonatal encephalopathy (NE). We hypothesized that brain biomarker mRNA, cytokine mRNA and microRNA differentiate inflammation (E. coli LPS), hypoxia (Hypoxia), and inflammation-sensitized hypoxia (LPS+Hypoxia) in an NE piglet model. METHODS: Sixteen piglets were randomized: (i) LPS 2 µg/kg bolus; 1 µg/kg infusion (LPS; n = 5), (ii) Saline with hypoxia (Hypoxia; n = 6), (iii) LPS commencing 4 h pre-hypoxia (LPS+Hypoxia; n = 5). Total RNA was acquired at baseline, 4 h after LPS and 1, 3, 6, 12, 24, 48 h post-insult (animals euthanized at 48 h). Quantitative PCR was performed for cytokines (IL1A, IL6, CXCL8, IL10, TNFA) and brain biomarkers (ENO2, UCHL1, S100B, GFAP, CRP, BDNF, MAPT). MicroRNA was detected using GeneChip (Affymetrix) microarrays. Fold changes from baseline were compared between groups and correlated with cell death (TUNEL) at 48 h. RESULTS: Within 6 h post-insult, we observed increased IL1A, CXCL8, CCL2 and ENO2 mRNA in LPS+Hypoxia and LPS compared to Hypoxia. IL10 mRNA differentiated all groups. Four microRNAs differentiated LPS+Hypoxia and Hypoxia: hsa-miR-23a, 27a, 31-5p, 193-5p. Cell death correlated with TNFA (R = 0.69; p < 0.01) at 1-3 h and ENO2 (R = -0.69; p = 0.01) at 48 h. CONCLUSIONS: mRNA and miRNA differentiated hypoxia from inflammation-sensitized hypoxia within 6 h in a piglet model. This information may inform human studies to enable triage for tailored neuroprotection in NE. IMPACT: Early stratification of infants with neonatal encephalopathy is key to providing tailored neuroprotection. IL1A, CXCL8, IL10, CCL2 and NSE mRNA are promising biomarkers of inflammation-sensitized hypoxia. IL10 mRNA levels differentiated all three pathological states; fold changes from baseline was the highest in LPS+Hypoxia animals, followed by LPS and Hypoxia at 6 h. miR-23, -27, -31-5p and -193-5p were significantly upregulated within 6 h of a hypoxia insult. Functional analysis highlighted the diverse roles of miRNA in cellular processes.


Asunto(s)
Citocinas/genética , Hipoxia-Isquemia Encefálica/sangre , Inflamación/sangre , MicroARNs/sangre , ARN Mensajero/sangre , Animales , Animales Recién Nacidos , Biomarcadores , Encéfalo/patología , Quimiocinas/biosíntesis , Quimiocinas/genética , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Endotoxemia/sangre , Endotoxemia/inducido químicamente , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Hipoxia-Isquemia Encefálica/patología , Inflamación/genética , Lipopolisacáridos/toxicidad , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Fosfopiruvato Hidratasa/biosíntesis , Fosfopiruvato Hidratasa/genética , Distribución Aleatoria , Encefalopatía Asociada a la Sepsis/sangre , Encefalopatía Asociada a la Sepsis/inducido químicamente , Encefalopatía Asociada a la Sepsis/patología , Porcinos , Factores de Tiempo , Análisis de Matrices Tisulares , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
10.
Ecotoxicol Environ Saf ; 224: 112635, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34418854

RESUMEN

Groundwater is the main source of drinking water for a significant portion of the human population. In many agricultural areas, diffuse pollution such as high levels of total dissolved salts including nitrate, puts the quality of this resource at risk. However, the effect of exposure to these water contaminants on brain development is currently poorly understood. Here we characterised water from a borewell located in an intensely cultivated area (agricultural) or water from a borewell located in a nearby pristine forest. The agricultural borewell water was rich in nitrates with high total dissolved salts. We then studied the consequence of drinking the agricultural water on mouse brain development. For this, the agricultural borewell water or forest water was given to mice for 6 weeks before and during pregnancy and lactation. The brains of the offspring born to these dams were analysed at postnatal day (P)5 and P21 and compared using immunohistochemistry for changes in glial cells, neurons, myelin, and cell death across many brain regions. Brains from offspring born to dams who had been given agricultural water (versus forest control water) were significantly smaller, and at P21 had a significant degeneration of neurons and increased numbers of microglia in the motor cortex, had fewer white matter astrocytes and an increase in cell death, particularly in the dentate gyrus. This study shows that brain development is sensitive to water composition. It points to the importance of assessing neurodevelopmental delays when considering the effect of water contaminated with agricultural run offs on human health. MAIN FINDING: Pregnant and lactating mice were given borewell water from intensely cultivated land. Offspring brains reveal degeneration of neurons and a loss of astrocytes, increase in microglial cells and cell death, pointing to neurodevelopmental problems.

11.
Brain ; 142(12): 3806-3833, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665242

RESUMEN

Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/ß-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.


Asunto(s)
Encéfalo/metabolismo , Inflamación/metabolismo , Microglía/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Animales Modificados Genéticamente , Barrera Hematoencefálica/metabolismo , Células Cultivadas , Biología Computacional , Humanos , Ratones , Pez Cebra
12.
Glia ; 67(6): 1047-1061, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30637805

RESUMEN

Accumulating evidence suggests that changes in the metabolic signature of microglia underlie their response to inflammation. We sought to increase our knowledge of how pro-inflammatory stimuli induce metabolic changes. Primary microglia exposed to lipopolysaccharide (LPS)-expressed excessive fission leading to more fragmented mitochondria than tubular mitochondria. LPS-mediated Toll-like receptor 4 (TLR4) activation also resulted in metabolic reprogramming from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi-1, a putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi-1 treatment also normalized the changes caused by LPS exposure, namely an increase in mitochondrial reactive oxygen species production and mitochondrial membrane potential as well as accumulation of key metabolic intermediate of TCA cycle succinate. Moreover, Mdivi-1 treatment substantially reduced LPS induced cytokine and chemokine production. Finally, we showed that Mdivi-1 treatment attenuated expression of genes related to cytotoxic, repair, and immunomodulatory microglia phenotypes in an in vivo neuroinflammation paradigm. Collectively, our data show that the activation of microglia to a classically pro-inflammatory state is associated with a switch to glycolysis that is mediated by mitochondrial fission, a process which may be a pharmacological target for immunomodulation.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Microglía/efectos de los fármacos , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Fosforilación Oxidativa/efectos de los fármacos , Embarazo
13.
Pediatr Res ; 85(2): 155-165, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446768

RESUMEN

Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Enfermedades del Sistema Nervioso Central/fisiopatología , Recien Nacido Prematuro , Inflamación/fisiopatología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/patología , Humanos , Recién Nacido , Inflamación/patología
14.
J Neuroinflammation ; 15(1): 113, 2018 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-29673373

RESUMEN

BACKGROUND: Antenatal infection (i.e., chorioamnionitis) is an important risk factor for adverse neurodevelopmental outcomes after preterm birth. Destructive and developmental disturbances of the white matter are hallmarks of preterm brain injury. Understanding the temporal effects of antenatal infection in relation to the onset of neurological injury is crucial for the development of neurotherapeutics for preterm infants. However, these dynamics remain unstudied. METHODS: Time-mated ewes were intra-amniotically injected with lipopolysaccharide at 5, 12, or 24 h or 2, 4, 8, or 15 days before preterm delivery at 125 days gestational age (term ~ 150 days). Post mortem analyses for peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed. Moreover, considering the neuroprotective potential of erythropoietin (EPO) for perinatal brain injury, we evaluated (phosphorylated) EPO receptor (pEPOR) expression in the fetal brain following LPS exposure. RESULTS: Intra-amniotic exposure to this single bolus of LPS resulted in a biphasic systemic IL-6 and IL-8 response. In the developing brain, intra-amniotic LPS exposure induces a persistent microgliosis (IBA-1 immunoreactivity) but a shorter-lived increase in the pro-inflammatory marker COX-2. Cell death (caspase-3 immunoreactivity) was only observed when LPS exposure was greater than 8 days in the white matter, and there was a reduction in the number of (pre) oligodendrocytes (Olig2- and PDGFRα-positive cells) within the white matter at 15 days post LPS exposure only. pEPOR expression displayed a striking biphasic regulation following LPS exposure which may help explain contradicting results among clinical trials that tested EPO for the prevention of preterm brain injury. CONCLUSION: We provide increased understanding of the spatiotemporal pathophysiological changes in the preterm brain following intra-amniotic inflammation which may aid development of new interventions or implement interventions more effectively to prevent perinatal brain damage.


Asunto(s)
Lesiones Encefálicas/etiología , Corioamnionitis/etiología , Inflamación/etiología , Nacimiento Prematuro/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Líquido Amniótico/efectos de los fármacos , Animales , Femenino , Feto , Edad Gestacional , Lipopolisacáridos/toxicidad , Embarazo , Nacimiento Prematuro/inducido químicamente , Ovinos , Factores de Tiempo
15.
Brain Behav Immun ; 74: 265-276, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30218783

RESUMEN

Fifteen million babies are born preterm every year and a significant number suffer from permanent neurological injuries linked to white matter injury (WMI). A chief cause of preterm birth itself and predictor of the severity of WMI is exposure to maternal-fetal infection-inflammation such as chorioamnionitis. There are no neurotherapeutics for this WMI. To affect this healthcare need, the repurposing of drugs with efficacy in other white matter injury models is an attractive strategy. As such, we tested the efficacy of GSK247246, an H3R antagonist/inverse agonist, in a model of inflammation-mediated WMI of the preterm born infant recapitulating the main clinical hallmarks of human brain injury, which are oligodendrocyte maturation arrest, microglial reactivity, and hypomyelination. WMI is induced by mimicking the effects of maternal-fetal infection-inflammation and setting up neuroinflammation. We induce this process at the time in the mouse when brain development is equivalent to the human third trimester; postnatal day (P)1 through to P5 with i.p. interleukin-1ß (IL-1ß) injections. We initiated GSK247246 treatment (i.p at 7 mg/kg or 20 mg/kg) after neuroinflammation was well established (on P6) and it was administered twice daily through to P10. Outcomes were assessed at P10 and P30 with gene and protein analysis. A low dose of GSK247246 (7 mg/kg) lead to a recovery in protein expression of markers of myelin (density of Myelin Basic Protein, MBP & Proteolipid Proteins, PLP) and a reduction in macro- and microgliosis (density of ionising adaptor protein, IBA1 & glial fibrillary acid protein, GFAP). Our results confirm the neurotherapeutic efficacy of targeting the H3R for WMI seen in a cuprizone model of multiple sclerosis and a recently reported clinical trial in relapsing-remitting multiple sclerosis patients. Further work is needed to develop a slow release strategy for this agent and test its efficacy in large animal models of preterm infant WMI.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/farmacología , Sustancia Blanca/lesiones , Sustancia Blanca/patología , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encefalopatías/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Neurogénesis , Neuroinmunomodulación/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Oligodendroglía , Embarazo , Nacimiento Prematuro/tratamiento farmacológico , Receptores Histamínicos/metabolismo , Sustancia Blanca/metabolismo
16.
Glia ; 65(12): 2024-2037, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28856805

RESUMEN

Inflammation is a major risk factor for neonatal white matter injury (NWMI), which is associated with later development of cerebral palsy. Although recent studies have demonstrated maturation arrest of oligodendrocyte progenitor cells (OPCs) in NWMI, the identity of inflammatory mediators with direct effects on OPCs has been unclear. Here, we investigated downstream effects of pro-inflammatory IL-1ß to induce cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) production in white matter. First, we assessed COX2 expression in human fetal brain and term neonatal brain affected by hypoxic-ischemic encephalopathy (HIE). In the developing human brain, COX2 was expressed in radial glia, microglia, and endothelial cells. In human term neonatal HIE cases with subcortical WMI, COX2 was strongly induced in reactive astrocytes with "A2" reactivity. Next, we show that OPCs express the EP1 receptor for PGE2, and PGE2 acts directly on OPCs to block maturation in vitro. Pharmacologic blockade with EP1-specific inhibitors (ONO-8711, SC-51089), or genetic deficiency of EP1 attenuated effects of PGE2. In an IL-1ß-induced model of NWMI, astrocytes also exhibit "A2" reactivity and induce COX2. Furthermore, in vivo inhibition of COX2 with Nimesulide rescues hypomyelination and behavioral impairment. These findings suggest that neonatal white matter astrocytes can develop "A2" reactivity that contributes to OPC maturation arrest in NWMI through induction of COX2-PGE2 signaling, a pathway that can be targeted for neonatal neuroprotection.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Oligodendroglía/metabolismo , Sustancia Blanca/citología , Sustancia Blanca/efectos de los fármacos , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Células Cultivadas , Femenino , Feto/citología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Interleucina-1beta/farmacología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Sustancia Blanca/crecimiento & desarrollo , Sustancia Blanca/metabolismo
17.
Dev Neurosci ; 39(1-4): 182-191, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28494460

RESUMEN

Excitotoxicity plays a key role during insults to the developing brain such as neonatal encephalopathy, stroke, and encephalopathy of prematurity. Such insults affect many thousands of infants each year. Excitotoxicity causes frank lesions due to cell death and gliosis and disturbs normal developmental process, leading to deficits in learning, memory, and social integration that persist into adulthood. Understanding the underlying processes of the acute effects of excitotoxicity and its persistence during brain maturation provides an opportunity to identify mechanistic or diagnostic biomarkers, thus enabling and designing possible therapies. We applied mass spectrometry to provide metabolic profiles of brain tissue and plasma over time following an excitotoxic lesion (intracerebral ibotenate) to the neonatal (postnatal day 5) mouse brain. We found no differences between the plasma from the control (PBS-injected) and excitotoxic (ibotenate-injected) groups over time (on postnatal days 8, 9, 10, and 30). In the brain, we found that variations in amino acids (arginine, glutamine, phenylananine, and proline) and glycerophospholipids were sustaining acute and delayed (tertiary) responses to injury. In particular, the effect of the excitotoxic lesion on the normal profile of development was linked to alterations in a fingerprint of glycerophospolipids and amino acids. Specifically, we identified increases in the amino acids glutamine, proline, serine, threonine, tryptophan, valine, and the sphingolipid SM C26:1, and decreases in the glycerophospholipids, i.e., the arachidonic acid-containing phosphatidylcholine (PC aa) C30:2 and the PC aa C32:3. This study demonstrates that metabolic profiling is a useful approach to identify acute and tertiary effects in an excitotoxic lesion model, and generating a short list of targets with future potential in the hunt for identification, stratification, and possibly therapy.


Asunto(s)
Encefalopatías/metabolismo , Animales , Animales Recién Nacidos , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Ácido Iboténico/toxicidad , Masculino , Ratones , Fenotipo
18.
Dev Neurosci ; 39(1-4): 124-140, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28486224

RESUMEN

BACKGROUND: Cerebral palsy (CP) is the most common motor disability in childhood, with a worldwide prevalence of 1.5-4/1,000 live births. Hypoxic-ischemic encephalopathy (HIE) contributes to the burden of CP, but the long-term neuropathological findings of this association remain limited. METHODOLOGY: Thirty-four term Macaca nemestrina macaques were included in this long-term neuropathological study: 9 control animals delivered by cesarean section and 25 animals with perinatal asphyxia delivered by cesarean section after 15-18 min of umbilical cord occlusion (UCO). UCO animals were randomized to saline (n = 11), therapeutic hypothermia (TH; n = 6), or TH + erythropoietin (Epo; n = 8). Epo was given on days 1, 2, 3, and 7. Animals had serial developmental assessments and underwent magnetic resonance imaging with diffusion tensor imaging at 9 months of age followed by necropsy. Histology and immunohistochemical (IHC) staining of brain and brainstem sections were performed. RESULTS: All UCO animals demonstrated and met the standard diagnostic criteria for human neonates with moderate-to-severe HIE. Four animals developed moderate-to-severe CP (3 UCO and 1 UCO + TH), 9 had mild CP (2 UCO, 3 UCO + TH, 3 UCO + TH + Epo, and 1 control), and 2 UCO animals died. None of the animals treated with TH + Epo died, had moderate-to-severe CP, or demonstrated signs of long-term neuropathological toxicity. Compared to animals grouped together as having no CP (no-CP; controls and mild CP only), animals with CP (moderate and severe) demonstrated decreased fractional anisotropy of multiple white-matter tracts including the corpus callosum and internal capsule, when using Tract-Based Spatial Statistics (TBSS). Animals with CP had decreased staining for cortical neurons and increased brainstem glial scarring compared to animals without CP. The cerebellar cell density of the internal granular layer and white matter was decreased in CP animals compared to that in control animals without CP. CONCLUSIONS/SIGNIFICANCE: In this nonhuman primate HIE model, animals treated with TH + Epo had less brain pathology noted on TBSS and IHC staining, which supports the long-term safety of TH + Epo in the setting of HIE. Animals that developed CP showed white-matter changes noted on TBSS, subtle histopathological changes in both the white and gray matter, and brainstem injury that correlated with CP severity. This HIE model may lend itself to further study of the relationship between brainstem injury and CP.


Asunto(s)
Asfixia Neonatal/complicaciones , Parálisis Cerebral/patología , Modelos Animales de Enfermedad , Hipoxia-Isquemia Encefálica/etiología , Animales , Animales Recién Nacidos , Asfixia Neonatal/patología , Parálisis Cerebral/etiología , Eritropoyetina/farmacología , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/patología , Macaca nemestrina , Distribución Aleatoria
19.
Dev Neurosci ; 39(1-4): 156-170, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28391258

RESUMEN

The selective α2-adrenoreceptor agonist dexmedetomidine has shown neuroprotective, analgesic, anti-inflammatory, and sympatholytic properties that may be beneficial in neonatal encephalopathy (NE). As therapeutic hypothermia is only partially effective, adjunct therapies are needed to optimize outcomes. The aim was to assess whether hypothermia + dexmedetomidine treatment augments neuroprotection compared to routine treatment (hypothermia + fentanyl sedation) in a piglet model of NE using magnetic resonance spectroscopy (MRS) biomarkers, which predict outcomes in babies with NE, and immunohistochemistry. After hypoxia-ischaemia (HI), 20 large White male piglets were randomized to: (i) hypothermia + fentanyl with cooling to 33.5°C from 2 to 26 h, or (ii) hypothermia + dexmedetomidine (a loading dose of 2 µg/kg at 10 min followed by 0.028 µg/kg/h for 48 h). Whole-brain phosphorus-31 and regional proton MRS biomarkers were assessed at baseline, 24, and 48 h after HI. At 48 h, cell death was evaluated over 7 brain regions by means of transferase-mediated d-UTP nick end labeling (TUNEL). Dexmedetomidine plasma levels were mainly within the target sedative range of 1 µg/L. In the hypothermia + dexmedetomidine group, there were 6 cardiac arrests (3 fatal) versus 2 (non-fatal) in the hypothermia + fentanyl group. The hypothermia + dexmedetomidine group required more saline (p = 0.005) to maintain blood pressure. Thalamic and white-matter lactate/N-acetylaspartate did not differ between groups (p = 0.66 and p = 0.21, respectively); the whole-brain nucleotide triphosphate/exchangeable phosphate pool was similar (p = 0.73) over 48 h. Cell death (TUNEL-positive cells/mm2) was higher in the hypothermia + dexmedetomidine group than in the hypothermia + fentanyl group (mean 5.1 vs. 2.3, difference 2.8 [95% CI 0.6-4.9], p = 0.036). Hypothermia + dexmedetomidine treatment was associated with adverse cardiovascular events, even within the recommended clinical sedative plasma level; these may have been exacerbated by an interaction with either isoflurane or low body temperature. Hypothermia + dexmedetomidine treatment was neurotoxic following HI in our piglet NE model, suggesting that caution is vital if dexmedetomidine is combined with cooling following NE.


Asunto(s)
Asfixia Neonatal , Sistema Cardiovascular/efectos de los fármacos , Dexmedetomidina/toxicidad , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores/toxicidad , Animales , Animales Recién Nacidos , Terapia Combinada/métodos , Masculino , Distribución Aleatoria , Porcinos
20.
Brain Behav Immun ; 63: 197-209, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27818218

RESUMEN

The cognitive and behavioural deficits caused by traumatic brain injury (TBI) to the immature brain are more severe and persistent than TBI in the mature brain. Understanding this developmental sensitivity is critical as children under four years of age sustain TBI more frequently than any other age group. Microglia (MG), resident immune cells of the brain that mediate neuroinflammation, are activated following TBI in the immature brain. However, the type and temporal profile of this activation and the consequences of altering it are still largely unknown. In a mouse model of closed head weight drop paediatric brain trauma, we characterized i) the temporal course of total cortical neuroinflammation and the phenotype of ex vivo isolated CD11B-positive microglia/macrophage (MG/MΦ) using a battery of 32 markers, and ii) neuropathological outcome 1 and 5days post-injury. We also assessed the effects of targeting MG/MΦ activation directly, using minocycline a prototypical microglial activation antagonist, on these processes and outcome. TBI induced a moderate increase in both pro- and anti-inflammatory cytokines/chemokines in the ipsilateral hemisphere. Isolated cortical MG/MΦ expressed increased levels of markers of endogenous reparatory/regenerative and immunomodulatory phenotypes compared with shams. Blocking MG/MΦ activation with minocycline at the time of injury and 1 and 2days post-injury had only transient protective effects, reducing ventricular dilatation and cell death 1day post-injury but having no effect on injury severity at 5days. This study demonstrates that, unlike in adults, the role of MG/MΦ in injury mechanisms following TBI in the immature brain may not be negative. An improved understanding of MG/MΦ function in paediatric TBI could support translational efforts to design therapeutic interventions.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Activación de Macrófagos/fisiología , Microglía/metabolismo , Animales , Encéfalo/metabolismo , Lesiones Encefálicas/inmunología , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/inmunología , Quimiocinas/inmunología , Quimiocinas/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Minociclina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA