Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Waste Manag Res ; : 734242X241227373, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297825

RESUMEN

The biochemical methane potential (BMP) test is significant for the landfill industry as it provides a means to evaluate the gas potential, and therefore potential degradability, of both incoming and in-place municipal solid waste (MSW). However, the BMP test is not standardized making comparison of BMP results across sites problematic. For example, the BMP test duration has historically ranged from 20 days to several months with most current BMP tests lasting 60 days. However, the gas generation data can potentially be modelled for any of those durations to produce a prediction of the ultimate BMP value (BMPULT). Currently, the predicted BMPULT values of 23 long-duration (115-150 days) BMP tests were used to determine the required quantity of data (i.e. number of days) needed to produce an accurate BMPULT prediction. Results showed that no single test duration produced both accurate and efficient results, so a novel performance-based endpoint was proposed. The relative change in predicted BMPULT values with respect to time (dBMPULT/dt) was chosen as a potential performance-based completion metric. Results indicate that once the absolute normalized dBMPULT/dt value is within <2.5, <1.5 and <0.6% day-1 that the predicted BMPULT is within 20, 10 and 5% of the true BMPULT, respectively. Overall, the use of performance-based metrics for determining BMP test completion will allow for the collection of partial data sets, reduced experimental times and verification of results.

2.
Anal Biochem ; 663: 115019, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526022

RESUMEN

Ras family GTPases (H/K/N-Ras) modulate numerous effectors, including the lipid kinase PI3K (phosphatidylinositol-3-kinase) that generates growth signal lipid PIP3 (phosphatidylinositol-3,4,5-triphosphate). Active GTP-Ras binds PI3K with high affinity, thereby stimulating PIP3 production. We hypothesize the affinity of this binding interaction could be significantly increased or decreased by Ras mutations at PI3K contact positions, with clinical implications since some Ras mutations at PI3K contact positions are disease-linked. To enable tests of this hypothesis, we have developed an approach combining UV spectral deconvolution, HPLC, and microscale thermophoresis to quantify the KD for binding. The approach measures the total Ras concentration, the fraction of Ras in the active state, and the affinity of active Ras binding to its docking site on PI3K Ras binding domain (RBD) in solution. The approach is illustrated by KD measurements for the binding of active H-Ras and representative mutants, each loaded with GTP or GMPPNP, to PI3Kγ RBD. The findings demonstrate that quantitation of the Ras activation state increases the precision of KD measurements, while also revealing that Ras mutations can increase (Q25L), decrease (D38E, Y40C), or have no effect (G13R) on PI3K binding affinity. Significant Ras affinity changes are predicted to alter PI3K regulation and PIP3 growth signals.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas ras , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas ras/química , Unión Proteica , Guanosina Trifosfato/metabolismo , Fosfatidilinositoles
3.
Nature ; 542(7642): 494-497, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28230119

RESUMEN

Nucleic acids undergo naturally occurring chemical modifications. Over 100 different modifications have been described and every position in the purine and pyrimidine bases can be modified; often the sugar is also modified. Despite recent progress, the mechanism for the biosynthesis of most modifications is not fully understood, owing, in part, to the difficulty associated with reconstituting enzyme activity in vitro. Whereas some modifications can be efficiently formed with purified components, others may require more intricate pathways. A model for modification interdependence, in which one modification is a prerequisite for another, potentially explains a major hindrance in reconstituting enzymatic activity in vitro. This model was prompted by the earlier discovery of tRNA cytosine-to-uridine editing in eukaryotes, a reaction that has not been recapitulated in vitro and the mechanism of which remains unknown. Here we show that cytosine 32 in the anticodon loop of Trypanosoma brucei tRNAThr is methylated to 3-methylcytosine (m3C) as a pre-requisite for C-to-U deamination. Formation of m3C in vitro requires the presence of both the T. brucei m3C methyltransferase TRM140 and the deaminase ADAT2/3. Once formed, m3C is deaminated to 3-methyluridine (m3U) by the same set of enzymes. ADAT2/3 is a highly mutagenic enzyme, but we also show that when co-expressed with the methyltransferase its mutagenicity is kept in check. This helps to explain how T. brucei escapes 'wholesale deamination' of its genome while harbouring both enzymes in the nucleus. This observation has implications for the control of another mutagenic deaminase, human AID, and provides a rationale for its regulation.


Asunto(s)
Metiltransferasas/metabolismo , Nucleósido Desaminasas/metabolismo , Edición de ARN , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Anticodón/metabolismo , Secuencia de Bases , Citosina/análogos & derivados , Citosina/metabolismo , Desaminación , Metilación , ARN de Transferencia de Treonina/genética , Uridina/metabolismo
4.
Biochem J ; 479(4): 561-580, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35136964

RESUMEN

Adenosine-to-inosine conversion at position 34 (A34-to-I) of certain tRNAs is essential for expanding their decoding capacity. This reaction is catalyzed by the adenosine deaminase acting on tRNA (ADAT) complex, which in Eukarya is formed by two subunits: ADAT2 and ADAT3. We herein identified and thoroughly characterized the ADAT molecules from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas Disease. TcADAT2 and TcADAT3 spontaneously form a catalytically active complex, as shown by expression in engineered bacteria and/or by the increased ex vivo tRNA A-to-I deamination activity of T. cruzi epimastigotes overexpressing TcADAT subunits. Importantly, enhanced TcADAT2/3 activity in transgenic parasites caused a shift in their in vivo tRNAThrAGU signature, which correlated with significant changes in the expression of the Thr-rich TcSMUG proteins. To our knowledge, this is the first evidence indicating that T. cruzi tRNA editing can be modulated in vivo, in turn post-transcriptionally changing the expression of specific genes. Our findings suggest tRNA editing/availability as a forcible step in controlling gene expression and driving codon adaptation in T. cruzi. Moreover, we unveil certain differences between parasite and mammalian host tRNA editing and processing, such as cytosine-to-uridine conversion at position 32 of tRNAThrAGU in T. cruzi, that may be exploited for the identification of novel druggable targets of intervention.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Animales , Enfermedad de Chagas/genética , Expresión Génica , Mamíferos , Mucinas , Procesamiento Postranscripcional del ARN , Trypanosoma cruzi/genética
5.
Mol Ecol ; 31(9): 2712-2729, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35243721

RESUMEN

Due to multigeneration domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disruption of local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic consequences posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene transcript expression differences among divergent farmed, wild and F1  hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of fry at the end of yolk sac absorption of a European (EO) farmed ("StofnFiskur", Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1  hybrids using 44 K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected the fewest differentially expressed transcripts between F1  hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the wild populations.


Asunto(s)
Salmo salar , Adaptación Fisiológica , Animales , Hibridación Genética , América del Norte , Salmo salar/genética , Transcriptoma/genética
6.
Mol Cell ; 52(2): 184-92, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24095278

RESUMEN

In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.


Asunto(s)
Intrones/genética , Edición de ARN , Empalme del ARN , ARN de Transferencia de Tirosina/genética , Trypanosoma brucei brucei/genética , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Protozoario/genética , ARN Protozoario/metabolismo , ARN de Transferencia de Tirosina/química , ARN de Transferencia de Tirosina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Trypanosoma brucei brucei/metabolismo
7.
J Fish Biol ; 99(6): 1978-1989, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34495559

RESUMEN

Use of fast-growing domesticated and/or genetically modified strains of fish is becoming increasingly common in aquaculture, increasing the likelihood of deliberate or accidental introductions into the wild. To date, their ecological impacts on ecosystems remain to be quantified. Here, using a controlled phenotype manipulation by implanting growth hormone in juvenile Atlantic salmon (Salmo salar), we found that growth-enhanced fish display changes in several phenotypic traits known to be important for ecosystem functioning, such as habitat use, morphology and excretion rate. Furthermore, these phenotypic changes were associated with significant impacts on the invertebrate community and key stream ecosystem functions such as primary production and leaf-litter decomposition. These findings provide novel evidence that introductions of growth-enhanced fish into the wild can affect the functioning of natural ecosystems and represent a form of intraspecific invasion. Consequently, environmental impact assessments of growth-enhanced organisms need to explicitly consider ecosystem-level effects.


Asunto(s)
Ecosistema , Salmo salar , Animales , Acuicultura , Fenotipo , Ríos
8.
Br J Nurs ; 30(17): 1032-1038, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34605255

RESUMEN

During the COVID-19 pandemic, virtual pre-assessment was introduced for all elective and semi-urgent surgeries to maintain surgical clinical services in the authors' Trust. This mainly involved telephone pre-assessments, although occasionally video technology was used. This had to be managed and maintained at a distance with little or no training or established method. This article includes experiences of staff involved in a single tertiary centre, an assessment of the pros and cons of virtual pre-assessment and concludes with a set of recommendations to enhance the utility of the service for the future.


Asunto(s)
COVID-19 , Pandemias , Procedimientos Quirúrgicos Electivos , Humanos , SARS-CoV-2 , Teléfono
9.
Org Biomol Chem ; 17(6): 1480-1486, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30681115

RESUMEN

Prostate cancer represents a major public health threat as it is one of the most common male cancers worldwide. The prostate-specific membrane antigen (PSMA) is highly over-expressed in prostatic cancer cells in a manner that correlates with both tumour stage and clinical outcome. As such, PSMA has been identified as an attractive target for both imaging and treatment of prostate cancer. In recent years the focus on urea-based peptidomimetic inhibitors of the PSMA (representing low molecular weight/high affinity binders) has intensified as they have found use in the clinical imaging of prostate tumours. Reported herein are the design, synthesis and evaluation of a new fluorinated PSMA targeting small-molecule, FDA-PEG-GUL, which possesses the Glu-NH-CO-NH-Lys pharmacophore conjugated to a 5'-fluorodeoxy-adenosine unit. Inhibition assays were performed with FDA-PEG-GUL which revealed that it inhibits the PSMA in the nanomolar range. Additionally, it has been purposely designed so that it can be produced using the fluorinase enzyme from its chlorinated precursor, allowing for the enzymatic synthesis of radiolabelled [18F]FDA-PEG-GUL via a nucleophilic reaction that takes place in experimentally advantageous conditions (in water at neutral pH and at ambient temperature). Specific binding of [18F]FDA-PEG-GUL to PSMA expressing cancer cells was demonstrated, validating it as a promising PSMA diagnostic tool. This work establishes a successful substrate scope expansion for the fluorinase and demonstrates its first application towards targeting the PSMA.


Asunto(s)
Antígenos de Superficie/metabolismo , Proteínas Bacterianas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Radioisótopos de Flúor , Glutamato Carboxipeptidasa II/metabolismo , Lisina/química , Oxidorreductasas/metabolismo , Radioquímica/métodos , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Humanos , Marcaje Isotópico , Ligandos , Streptomyces/enzimología
10.
Rapid Commun Mass Spectrom ; 32(9): 695-702, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29486520

RESUMEN

RATIONALE: Oil sands mining in Alberta, Canada, requires removal and stockpiling of considerable volumes of near-surface overburden material. This overburden includes lean oil sands (LOS) which cannot be processed economically but contain sparingly soluble petroleum hydrocarbons and naphthenic acids, which can leach into environmental waters. In order to measure and track the leaching of dissolved constituents and distinguish industrially derived organics from naturally occurring organics in local waters, practical methods were developed for characterizing multiple sources of contaminated water leakage. METHODS: Capillary electrophoresis/positive-ion electrospray ionization low-resolution time-of-flight mass spectrometry (CE/LRMS), high-resolution negative-ion electrospray ionization Orbitrap mass spectrometry (HRMS) and conventional gas chromatography/flame ionization detection (GC/FID) were used to characterize porewater samples collected from within Athabasca LOS and mixed surficial materials. GC/FID was used to measure total petroleum hydrocarbon and HRMS was used to measure total naphthenic acid fraction components (NAFCs). HRMS and CE/LRMS were used to characterize samples according to source. RESULTS: The amounts of total petroleum hydrocarbon in each sample as measured by GC/FID ranged from 0.1 to 15.1 mg/L while the amounts of NAFCs as measured by HRMS ranged from 5.3 to 82.3 mg/L. Factors analysis (FA) on HRMS data visually demonstrated clustering according to sample source and was correlated to molecular formula. LRMS coupled to capillary electrophoresis separation (CE/LRMS) provides important information on NAFC isomers by adding analyte migration time data to m/z and peak intensity. CONCLUSIONS: Differences in measured amounts of total petroleum hydrocarbons by GC/FID and NAFCs by HRMS indicate that the two methods provide complementary information about the nature of dissolved organic species in a soil or water leachate samples. NAFC molecule class Ox Sy is a possible tracer for LOS seepage. CE/LRMS provides complementary information and is a feasible and practical option for source evaluation of NAFCs in water.

11.
Nucleic Acids Res ; 43(8): 4262-73, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25845597

RESUMEN

Establishment of the early genetic code likely required strategies to ensure translational accuracy and inevitably involved tRNA post-transcriptional modifications. One such modification, wybutosine/wyosine is crucial for translational fidelity in Archaea and Eukarya; yet it does not occur in Bacteria and has never been described in mitochondria. Here, we present genetic, molecular and mass spectromery data demonstrating the first example of wyosine in mitochondria, a situation thus far unique to kinetoplastids. We also show that these modifications are important for mitochondrial function, underscoring their biological significance. This work focuses on TyW1, the enzyme required for the most critical step of wyosine biosynthesis. Based on molecular phylogeny, we suggest that the kinetoplastids pathways evolved via gene duplication and acquisition of an FMN-binding domain now prevalent in TyW1 of most eukaryotes. These findings are discussed in the context of the extensive U-insertion RNA editing in trypanosome mitochondria, which may have provided selective pressure for maintenance of mitochondrial wyosine in this lineage.


Asunto(s)
Guanosina/análogos & derivados , Mitocondrias/enzimología , ARN de Transferencia/metabolismo , Trypanosoma brucei brucei/enzimología , Guanosina/biosíntesis , Guanosina/química , Guanosina/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/química , Trypanosoma brucei brucei/genética
12.
Bioconjug Chem ; 27(5): 1332-40, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27077642

RESUMEN

Cyclic CNGRC (cCNGRC) peptides are very important targeting ligands for Aminopeptidase N (APN or CD13), which is overexpressed on the surface of many cancer cells. In this work we have (1) developed an efficient solid-phase synthesis and (2) tested on purified porcine APN and APN-expressing human cells two different classes of cCNGRC peptides: the first carrying a biotin affinity tag or a fluorescent tag attached to the carboxyl Arg-Cys-COOH terminus and the second with the tags attached to the amino H2N-Cys-Asn terminus. Carboxyl-terminus functionalized cCNGRC peptides 3, 6, and 8 showed good affinity for porcine APN and very good capacity to target and be internalized into APN-expressing cells. In contrast, amino-terminus functionalized cCNGRC peptides 4, 5, and 7 displayed significantly decreased affinity and targeting capacity. These results, which are in agreement with the recently reported X-ray structure of a cCNGRC peptide bound to APN showing important stabilizing interactions between the unprotected cCNGRC amino terminus and the APN active site, indicate that the carboxyl and not the amino-terminus of cCNGRC peptides should be used as a "handle" for the attachment of toxic payloads for therapy or isotopically labeled functions for imaging and nuclear medicine.


Asunto(s)
Antígenos CD13/metabolismo , Oligopéptidos/química , Oligopéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Humanos , Modelos Moleculares , Conformación Proteica , Porcinos
13.
Chemistry ; 22(31): 10998-1004, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27374143

RESUMEN

We report a last-step fluorinase-catalyzed [(18) F]-fluorination of a cysteine-containing RGD peptide. The peptide was attached through sulfur to a modified and more hydrophilic variant of the recently disclosed Barbas linker which was itself linked to a chloroadenosine moiety via a PEGylated chain. The fluorinase was able to use this construct as a substrate for a transhalogenation reaction to generate [(18) F]-radiolabeled RGD peptides, which retained high affinity to cancer-cell relevant αv ß3 integrins.


Asunto(s)
Cisteína/química , Radioisótopos de Flúor/química , Humanos , Modelos Moleculares , Péptidos
14.
Ecol Appl ; 26(3): 899-912, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27411259

RESUMEN

Environmental heterogeneity can combine with evolutionary responses to create very dynamic and often locally independent populations across a landscape. Such complexity creates difficulties for managers trying to conserve populations across large areas. This study develops, applies, and tests the use of stochastic life history modeling and Monte Carlo simulation to assess management scenarios related to the realities of regional fisheries management and conservation. We apply this approach to the management of recreational brook trout (Salvelinus fontinalis) fishing; an activity that can severely impact species balance, abundance, and the size structure of fish communities. Specifically, the model incorporates population-specific life-history information (e.g., growth rate, reproductive effort, and survival) to allow forecasts of the impact of various management strategies and/or changes to environmental conditions on a population's ecological characteristics (e.g., size structure, abundance, and probability of persistence). Sampling was carried out in 16 water bodies spread across four sites in Atlantic Canada. Each water body was sampled in 2005 and reassessed in 2008. This sampling had two primary objectives: (1) define a significant proportion of life-history variation of brook trout in Atlantic Canada, and (2) to test the precision and accuracy of model predictions of population responses to experimental exploitation and management changes. The model successfully predicted population responses to changes in adult survival in 12 of 13 populations having sufficient data for validation testing, while also proving to be a useful tool when engaging stakeholders regarding management options and their associated risk. We suggest that such models are cost-effective and have great potential for informing proactive management of jurisdictions with numerous and diverse populations.


Asunto(s)
Modelos Biológicos , Trucha/fisiología , Distribución Animal , Animales , Canadá , Estadios del Ciclo de Vida , Procesos Estocásticos
15.
Org Biomol Chem ; 14(11): 3120-9, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26906931

RESUMEN

The substrate scope of fluorinase enzyme mediated transhalogenation reactions is extended. Substrate tolerance allows a peptide cargo to be tethered to a 5'-chloro-5'-deoxynucleoside substrate for transhalogenation by the enzyme to a 5'-fluoro-5'-deoxynucleoside. The reaction is successfully extended from that previously reported for a monomeric cyclic peptide (cRGD) to cargoes of dendritic scaffolds carrying two and four cyclic peptide motifs. The RGD peptide sequence is known to bind upregulated αVß3 integrin motifs on the surface of cancer cells and it is demonstrated that the fluorinated products have a higher affinity to αVß3 integrin than their monomeric counterparts. Extending the strategy to radiolabelling of the peptide cargoes by tagging the peptides with [(18)F]fluoride was only moderately successful due to the poor water solubility of these higher order peptide scaffolds although the strategy holds promise for peptide constructs with improved solubility.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desoxirribonucleósidos/química , Desoxirribonucleósidos/metabolismo , Oxidorreductasas/metabolismo , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Streptomyces/enzimología , Desoxirribosa/análogos & derivados , Desoxirribosa/metabolismo , Halogenación , Humanos , Integrina alfaVbeta3/metabolismo , Modelos Moleculares
16.
J Cardiothorac Vasc Anesth ; 30(3): 665-70, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27321791

RESUMEN

OBJECTIVES: The aim of this pilot study was to assess the feasibility of a perioperative care bundle for enhanced recovery after cardiac surgery (ERACS). DESIGN: A prospective, observational study. SETTING: A major urban teaching and university hospital and tertiary referral center. PARTICIPANTS: The study included 53 patients undergoing cardiac surgery before implementation of an ERACS protocol (pre-ERACS group) and 52 patients undergoing cardiac surgery after implementation of an ERACS protocol (ERACS group). INTERVENTIONS: Based on recommendations from a consensus review in colorectal surgery, the following enhanced recovery perioperative care bundle was applied: detailed preoperative information, avoidance of prolonged fasting periods preoperatively, preoperative carbohydrate beverages, optimization of analgesia with avoidance of long-acting opioids, prevention of postoperative nausea and vomiting, early enteral nutrition postoperatively, and early mobilization. MEASUREMENTS AND MAIN RESULTS: The authors hypothesized that length of hospital stay would be reduced with ERACS. Secondary outcome variables included a composite of postoperative complications and pain scores. Whereas the length of stay in the group of patients receiving the bundle of enhanced recovery interventions remained unchanged compared with the non-ERACS group, there was a statistically significant reduction in the number of patients in the ERACS group presenting with one or more postoperative complications (including hospital-acquired infections, acute kidney injury, atrial fibrillation, respiratory failure, postoperative myocardial infarction, and death). In addition, postoperative pain scores were improved significantly in the ERACS group. CONCLUSIONS: This pilot study demonstrated that ERACS is feasible and has the potential for improved postoperative morbidity after cardiac surgery. A larger multicenter quality improvement study implementing perioperative care bundles would be the next step to further assess outcomes in ERACS patients.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Atención Perioperativa , Anciano , Estudios de Factibilidad , Femenino , Humanos , Tiempo de Internación , Masculino , Persona de Mediana Edad , Dolor Postoperatorio/fisiopatología , Proyectos Piloto , Estudios Prospectivos , Mejoramiento de la Calidad , Recuperación de la Función
17.
RNA ; 19(5): 649-58, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23520175

RESUMEN

All tRNAs undergo post-transcriptional chemical modifications as part of their natural maturation pathway. Some modifications, especially those in the anticodon loop, play important functions in translational efficiency and fidelity. Among these, 1-methylguanosine, at position 37 (m(1)G37) of the anticodon loop in several tRNAs, is evolutionarily conserved and participates in translational reading frame maintenance. In eukaryotes, the tRNA methyltransferase TRM5 is responsible for m(1)G formation in nucleus-encoded as well as mitochondria-encoded tRNAs, reflecting the universal importance of this modification for protein synthesis. However, it is not clear what role, if any, mitochondrial TRM5 serves in organisms that do not encode tRNAs in their mitochondrial genomes. These organisms may easily satisfy the m(1)G37 requirement through their robust mitochondrial tRNA import mechanisms. We have explored this possibility in the parasitic protist Trypanosoma brucei and show that down-regulation of TRM5 by RNAi leads to the expected disappearance of m(1)G37, but with surprisingly little effect on cytoplasmic translation. On the contrary, lack of TRM5 causes a marked growth phenotype and a significant decrease in mitochondrial functions, including protein synthesis. These results suggest mitochondrial TRM5 may be needed to mature unmethylated tRNAs that reach the mitochondria and that could pose a problem for translational fidelity. This study also reveals an unexpected lack of import specificity between some fully matured and potentially defective tRNA species.


Asunto(s)
Metiltransferasas , Proteínas Mitocondriales , ARN de Transferencia , Trypanosoma brucei brucei , Anticodón/química , Regulación hacia Abajo , Genoma Mitocondrial , Guanosina/análogos & derivados , Guanosina/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/química , ARN de Transferencia/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
18.
Semin Cell Dev Biol ; 23(3): 269-74, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22024020

RESUMEN

In all organisms tRNAs play the essential role of connecting the genetic information found in DNA with the protein synthesis machinery ensuring fidelity during translation. Following transcription tRNAs undergo a number of processing events including numerous post-transcriptional modifications that render a tRNA molecule fully functional. The effects of some modifications go beyond simply affecting tRNA structure and can alter the meaning of the tRNA. This review will summarize the current state of the tRNA editing field, highlighting how editing affects tRNA structure and function in various organisms. It will also discuss recent data that hints at connections between editing and modification that may be exploited by cells to modulate a tRNA's role in translation.


Asunto(s)
Edición de ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Humanos , Biosíntesis de Proteínas
19.
Breast Cancer Res Treat ; 144(2): 241-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24522376

RESUMEN

HER-2 overexpression does not guarantee response to HER2-targeting drugs such as trastuzumab, which is cardiotoxic and expensive, so early detection of response status is crucial. Factors influencing [(18)F]FDG incorporation in the timeframe of cell signalling down-regulation subsequent to trastuzumab treatment are investigated to provide a better understanding of the relationship between growth response and modulation of [(18)F]FDG incorporation. HER-2-overexpressing breast tumour cell lines, MDA-MB-453, SKBr3 and BT474 and MDA-MB-468 (HER2 non-over-expressor) were treated with trastuzumab (4 h) and probed for AKT, pAKT, ERK1/2, pERK1/2 and HIF-1α to determine early signalling pathway inhibitory effects of trastuzumab. Cells incubated with trastuzumab and/or PI3K inhibitor LY294002 and ERK1/2 inhibitor U0126 and glucose transport and [(18)F]FDG incorporation measured. Cell lines expressed AKT, pAKT, ERK1/2 and pERK1/2 but not HIF-1α. Trastuzumab treatment decreased pAkt but not pERK1/2 levels. Trastuzumab did not further inhibit AKT when maximally inhibited with LY294002. Treatment with LY294002 and trastuzumab for 4 h decreased [(18)F]FDG incorporation in BT474 and MDA-MB-453 but not SKBr3 cells. LY294002 inhibited glucose transport by each cell line, but the glucose transport rate was tenfold higher by SKBr3 cells than BT474 and MDA-MB-453 cells. AKT-induced uptake of [(18)F]FDG was found to be HIF-1α independent in breast cancer cell lines. AKT inhibition level and tumour cell glucose transport rate can influence whether or not PI3K inhibitors affect [(18)F]FDG incorporation which may account for the variation in preclinical and clinical findings associated with [(18)F]FDG-PET in response to trastuzumab and other HER-2 targeting drugs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama/metabolismo , Fluorodesoxiglucosa F18/farmacocinética , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Radiofármacos/farmacocinética , Transporte Biológico/efectos de los fármacos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Cromonas/farmacología , Regulación hacia Abajo/efectos de los fármacos , Interacciones Farmacológicas , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Cintigrafía , Receptor ErbB-2/metabolismo , Trastuzumab
20.
Angew Chem Int Ed Engl ; 53(34): 8913-8, 2014 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-24989327

RESUMEN

A strategy for last-step (18)F fluorination of bioconjugated peptides is reported that exploits an "Achilles heel" in the substrate specificity of the fluorinase enzyme. An acetylene functionality at the C-2 position of the adenosine substrate projects from the active site into the solvent. The fluorinase catalyzes a transhalogenation of 5'-chlorodeoxy-2-ethynyladenosine (ClDEA) to 5'-fluorodeoxy-2-ethynyladenosine (FDEA). Extending a polyethylene glycol linker from the terminus of the acetylene allows the presentation of bioconjugation cargo to the enzyme for (18)F labelling. The method uses an aqueous solution (H2(18)O) of [(18)F]fluoride generated by the cyclotron and has the capacity to isotopically label peptides of choice for positron emission tomography (PET).


Asunto(s)
Proteínas Bacterianas/química , Flúor/química , Oligopéptidos/química , Oxidorreductasas/química , Cromatografía Líquida de Alta Presión , Modelos Moleculares , Conformación Proteica , Radioquímica , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA