Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 42(6): e112863, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36807601

RESUMEN

The Hippo pathway was originally discovered to control tissue growth in Drosophila and includes the Hippo kinase (Hpo; MST1/2 in mammals), scaffold protein Salvador (Sav; SAV1 in mammals) and the Warts kinase (Wts; LATS1/2 in mammals). The Hpo kinase is activated by binding to Crumbs-Expanded (Crb-Ex) and/or Merlin-Kibra (Mer-Kib) proteins at the apical domain of epithelial cells. Here we show that activation of Hpo also involves the formation of supramolecular complexes with properties of a biomolecular condensate, including concentration dependence and sensitivity to starvation, macromolecular crowding, or 1,6-hexanediol treatment. Overexpressing Ex or Kib induces formation of micron-scale Hpo condensates in the cytoplasm, rather than at the apical membrane. Several Hippo pathway components contain unstructured low-complexity domains and purified Hpo-Sav complexes undergo phase separation in vitro. Formation of Hpo condensates is conserved in human cells. We propose that apical Hpo kinase activation occurs in phase separated "signalosomes" induced by clustering of upstream pathway components.


Asunto(s)
Proteínas de Drosophila , Vía de Señalización Hippo , Animales , Humanos , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Neurofibromina 2/metabolismo , Drosophila melanogaster/metabolismo , Mamíferos , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
2.
J Microsc ; 294(3): 397-410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691400

RESUMEN

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Asunto(s)
Investigadores , Humanos , Movilidad Laboral , Investigación Biomédica/métodos , Selección de Profesión
3.
PLoS Biol ; 17(10): e3000509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31613895

RESUMEN

The Hippo signalling pathway restricts cell proliferation in animal tissues by inhibiting Yes-associated protein (YAP or YAP1) and Transcriptional Activator with a PDZ domain (TAZ or WW-domain-containing transcriptional activator [WWTR1]), coactivators of the Scalloped (Sd or TEAD) DNA-binding transcription factor. Drosophila has a single YAP/TAZ homolog named Yorkie (Yki) that is regulated by Hippo pathway signalling in response to epithelial polarity and tissue mechanics during development. Here, we show that Yki translocates to the nucleus to drive Sd-mediated cell proliferation in the ovarian follicle cell epithelium in response to mechanical stretching caused by the growth of the germline. Importantly, mechanically induced Yki nuclear localisation also requires nutritionally induced insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) via phosphatidyl inositol-3-kinase (PI3K), phosphoinositide-dependent kinase 1 (PDK1 or PDPK1), and protein kinase B (Akt or PKB) in the follicular epithelium. We find similar results in the developing Drosophila wing, where Yki becomes nuclear in the mechanically stretched cells of the wing pouch during larval feeding, which induces IIS, but translocates to the cytoplasm upon cessation of feeding in the third instar stage. Inactivating Akt prevents nuclear Yki localisation in the wing disc, while ectopic activation of the insulin receptor, PI3K, or Akt/PKB is sufficient to maintain nuclear Yki in mechanically stimulated cells of the wing pouch even after feeding ceases. Finally, IIS also promotes YAP nuclear localisation in response to mechanical cues in mammalian skin epithelia. Thus, the Hippo pathway has a physiological function as an integrator of epithelial cell polarity, tissue mechanics, and nutritional cues to control cell proliferation and tissue growth in both Drosophila and mammals.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinasa/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transactivadores/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Animales , Fenómenos Biomecánicos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Polaridad Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Células Epiteliales/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Mecanotransducción Celular , Ratones , Proteínas Nucleares/metabolismo , Folículo Ovárico/citología , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transactivadores/metabolismo , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
4.
J Microsc ; 285(2): 55-67, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34841540

RESUMEN

Core Facilities and Technology Platforms are increasingly important components of the science research landscape. However, data on facility operations and staff careers are lacking to inform their development. Here we have surveyed 114 people working in 46 light microscopy (LM) facilities within the United Kingdom. Our survey explores issues around career progression, facility operations and funding. The data show that facilities are substantial repositories of equipment and knowledge which adapt to meet the needs of their local environments. Our report highlights the challenges faced by facility managers, institutions and funders in evaluating facility performance and devising strategies to maximise the return on research funding investment.

5.
EMBO Rep ; 21(4): e49700, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32030856

RESUMEN

Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.


Asunto(s)
Uniones Adherentes , Huso Acromático , Animales , Drosophila/genética , Células Epiteliales , Mitosis
6.
Development ; 145(5)2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29440303

RESUMEN

Animal cells are thought to sense mechanical forces via the transcriptional co-activators YAP (or YAP1) and TAZ (or WWTR1), the sole Drosophila homolog of which is named Yorkie (Yki). In mammalian cells in culture, artificial mechanical forces induce nuclear translocation of YAP and TAZ. Here, we show that physiological mechanical strain can also drive nuclear localisation of Yki and activation of Yki target genes in the Drosophila follicular epithelium. Mechanical strain activates Yki by stretching the apical domain, reducing the concentration of apical Crumbs, Expanded, Kibra and Merlin, and reducing apical Hippo kinase dimerisation. Overexpressing Hippo kinase to induce ectopic activation in the cytoplasm is sufficient to prevent Yki nuclear localisation even in flattened follicle cells. Conversely, blocking Hippo signalling in warts clones causes Yki nuclear localisation even in columnar follicle cells. We find no evidence for involvement of other pathways, such as Src42A kinase, in regulation of Yki. Finally, our results in follicle cells appear generally applicable to other tissues, as nuclear translocation of Yki is also readily detectable in other flattened epithelial cells such as the peripodial epithelium of the wing imaginal disc, where it promotes cell flattening.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Mecánico , Alas de Animales/embriología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/embriología , Discos Imaginales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Mecanotransducción Celular/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transporte de Proteínas/genética , Transducción de Señal/genética , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
8.
Immunity ; 36(4): 635-45, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22483800

RESUMEN

Sterile inflammation can be initiated by innate immune recognition of markers of tissue injury termed damage-associated molecular patterns (DAMPs). DAMP recognition by dendritic cells (DCs) has also been postulated to lead to T cell responses to foreign antigens in tumors or allografts. Many DAMPs represent intracellular contents that are released upon cell damage, notably after necrosis. In this regard, we have previously described DNGR-1 (CLEC9A) as a DC-restricted receptor specific for an unidentified DAMP that is exposed by necrotic cells and is necessary for efficient priming of cytotoxic T cells against dead cell-associated antigens. Here, we have shown that the DNGR-1 ligand is preserved from yeast to man and corresponds to the F-actin component of the cellular cytoskeleton. The identification of F-actin as a DNGR-1 ligand suggests that cytoskeletal exposure is a universal sign of cell damage that can be targeted by the innate immune system to initiate immunity.


Asunto(s)
Actinas/metabolismo , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Necrosis/metabolismo , Receptores Mitogénicos/inmunología , Receptores Mitogénicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Células Dendríticas/metabolismo , Células HeLa , Humanos , Inmunidad Innata , Necrosis/inmunología , Interferencia de ARN , ARN Interferente Pequeño , Saccharomyces cerevisiae/genética , Linfocitos T Citotóxicos/inmunología
9.
EMBO J ; 34(7): 940-54, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25712476

RESUMEN

The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mecanotransducción Celular/fisiología , Folículo Ovárico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Espectrina/metabolismo , Animales , Línea Celular , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Folículo Ovárico/citología , Proteínas Serina-Treonina Quinasas/genética , Espectrina/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
10.
J Cell Sci ; 129(13): 2651-9, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27231092

RESUMEN

In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Microvellosidades/metabolismo , Miosina Tipo V/genética , Proteínas de Unión al GTP rab/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Cadherinas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Polaridad Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Humanos , Microtúbulos/genética , Microvellosidades/genética , Miosina Tipo V/metabolismo , Transporte de Proteínas/genética , Proteínas de Unión al GTP rab/metabolismo
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 555-64, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760605

RESUMEN

Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member of the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein-protein interaction.


Asunto(s)
Proteínas del Ojo , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Nucleósido-Fosfato Quinasa , Secuencias de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas del Ojo/química , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Guanilato-Quinasas/química , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
13.
Dev Cell ; 10(4): 497-508, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16580994

RESUMEN

Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of "muscle-specific" genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Movimiento Celular/fisiología , Proteínas de Drosophila/fisiología , Perfilación de la Expresión Génica , Oogénesis/fisiología , Ovario/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas del Citoesqueleto/fisiología , Drosophila , Proteínas de Drosophila/genética , Femenino , Oogénesis/genética , Ovario/citología , Ovario/metabolismo , Estatmina/fisiología , Factores de Transcripción/genética , Regulación hacia Arriba
14.
Curr Biol ; 17(12): 1067-71, 2007 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-17555966

RESUMEN

Stathmin, or Oncoprotein 18 (Op18), is the founding member of a phosphoprotein family that can regulate the microtubule cytoskeleton by sequestering tubulin and promoting microtubule catastrophe. Stathmin is subject to spatially and temporally controlled regulatory phosphorylation, which inhibits its interaction with tubulin. Drosophila Stathmin has similar properties to the mammalian proteins. We find that Drosophila Stathmin is required for specific microtubule-dependent processes: maintenance of oocyte identity within a germline cyst and localization of polarity determinants. Unexpectedly, microtubules are less abundant in stathmin mutant cells compared to normal cells, showing that a key function of Stathmin in vivo is the long-term maintenance of the microtubule cytoskeleton. The microtubule network re-forms more slowly after coldshock in stathmin mutant follicle cells. Surprisingly, stathmin mutant animals and tissues show a marked decrease in total tubulin-protein levels, and this might explain the effect on the microtubule cytoskeleton. Stathmin overexpression also increases tubulin protein. Free alpha- and beta-tubulin have been shown to negatively autoregulate their own synthesis. We suggest that Stathmin serves to maintain a noninhibitory, soluble, and releasable tubulin pool.


Asunto(s)
Drosophila/metabolismo , Drosophila/fisiología , Regulación de la Expresión Génica , Estatmina/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Polaridad Celular , Drosophila/genética , Microtúbulos/metabolismo , Estatmina/genética , Tubulina (Proteína)/genética
15.
BMC Dev Biol ; 9: 14, 2009 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-19228425

RESUMEN

BACKGROUND: How epithelial cells adopt their particular polarised forms is poorly understood. In a screen for genes regulating epithelial morphology in Drosophila, we identified sds22, a conserved gene previously characterised in yeast. RESULTS: In the columnar epithelia of imaginal discs or follicle cells, mutation of sds22 causes contraction of cells along their apical-basal axis, resulting in a more cuboidal morphology. In addition, the mutant cells can also display altered cell polarity, forming multiple layers in follicle cells and leaving the epithelium in imaginal discs. In yeast, sds22 encodes a PP1 phosphatase regulatory subunit. Consistent with this, we show that Drosophila Sds22 binds to all four Drosophila PP1s and shares an overlapping phenotype with PP1beta9c. We also show that two previously postulated PP1 targets, Spaghetti Squash and Moesin are hyper-phosphorylated in sds22 mutants. This function is shared by the human homologue of Sds22, PPP1R7. CONCLUSION: Sds22 is a conserved PP1 phosphatase regulatory subunit that controls cell shape and polarity.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/citología , Drosophila/enzimología , Proteína Fosfatasa 1/fisiología , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Línea Celular , Polaridad Celular/genética , Polaridad Celular/fisiología , Forma de la Célula/genética , Forma de la Célula/fisiología , Cartilla de ADN/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Células Epiteliales/citología , Células Epiteliales/enzimología , Ojo/enzimología , Ojo/crecimiento & desarrollo , Femenino , Genes de Insecto , Humanos , Mutación , Folículo Ovárico/citología , Folículo Ovárico/enzimología , Proteína Fosfatasa 1/genética , ARN Interferente Pequeño/genética , Especificidad de la Especie
16.
Elife ; 82019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31661072

RESUMEN

Mask family proteins were discovered in Drosophila to promote the activity of the transcriptional coactivator Yorkie (Yki), the sole fly homolog of mammalian YAP (YAP1) and TAZ (WWTR1). The molecular function of Mask, or its mammalian homologs Mask1 (ANKHD1) and Mask2 (ANKRD17), remains unclear. Mask family proteins contain two ankyrin repeat domains that bind Yki/YAP as well as a conserved nuclear localisation sequence (NLS) and nuclear export sequence (NES), suggesting a role in nucleo-cytoplasmic transport. Here we show that Mask acts to promote nuclear import of Yki, and that addition of an ectopic NLS to Yki is sufficient to bypass the requirement for Mask in Yki-driven tissue growth. Mammalian Mask1/2 proteins also promote nuclear import of YAP, as well as stabilising YAP and driving formation of liquid droplets. Mask1/2 and YAP normally colocalise in a granular fashion in both nucleus and cytoplasm, and are co-regulated during mechanotransduction.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Unión al ADN/genética , Drosophila , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Señales de Clasificación de Proteína , Transactivadores/genética , Proteínas Señalizadoras YAP
17.
Cell Rep ; 22(7): 1639-1646, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444419

RESUMEN

Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.


Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Células Epiteliales/citología , Células Epiteliales/enzimología , Quinasas p21 Activadas/metabolismo , Secuencia de Aminoácidos , Animales , Células CACO-2 , Proteínas de Drosophila/metabolismo , Humanos , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Interferencia de ARN , Quinasas p21 Activadas/química
18.
Mech Dev ; 123(10): 730-45, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16949798

RESUMEN

Gastrulation movements in Xenopus laevis are becoming increasingly well characterised, however the molecular mechanisms involved are less clear. Active migration of the leading edge mesendoderm across the fibronectin-coated blastocoel roof is necessary for further development of tissues such as head mesoderm, heart, blood and liver. The zinc finger transcription factors GATA4 and GATA6 are expressed in this migratory tissue during gastrulation, but their role here is unknown. This study further characterises the expression of GATA4 and 6 during gastrulation, and investigates their function in migratory behaviour. Gain-of-function experiments with these GATA factors induce cell spreading, polarisation and migration in non-motile presumptive ectoderm cells. Expression of a dominant-interfering form of GATA6, which inhibits transactivation of GATA targets, severely impairs the ability of dorsal leading edge mesendoderm to spread and translocate on fibronectin. Mosaic inhibition of GATA activity indicates that GATA factors function cell autonomously to induce cell spreading and movement in dorsal mesendoderm. Knockdown of specific GATA factors using anti-sense morpholinos indicates that GATA4 and GATA6 both contribute to dorsal mesendoderm migration in vitro. GATA4 and GATA6 are known to be involved in cell-specification of mesoderm and endoderm-derived tissues, but this is the first description of an additional role for these factors in cell migration.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/metabolismo , Gástrula/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Activinas/metabolismo , Animales , Movimiento Celular/fisiología , Forma de la Célula , Fibronectinas/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Gástrula/citología , Hibridación in Situ , Proteínas de Xenopus/genética
19.
Dev Cell ; 38(4): 384-98, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27554858

RESUMEN

Atypical protein kinase C (aPKC) is a key apical-basal polarity determinant and Par complex component. It is recruited by Par3/Baz (Bazooka in Drosophila) into epithelial apical domains through high-affinity interaction. Paradoxically, aPKC also phosphorylates Par3/Baz, provoking its relocalization to adherens junctions (AJs). We show that Par3 conserved region 3 (CR3) forms a tight inhibitory complex with a primed aPKC kinase domain, blocking substrate access. A CR3 motif flanking its PKC consensus site disrupts the aPKC kinase N lobe, separating P-loop/αB/αC contacts. A second CR3 motif provides a high-affinity anchor. Mutation of either motif switches CR3 to an efficient in vitro substrate by exposing its phospho-acceptor site. In vivo, mutation of either CR3 motif alters Par3/Baz localization from apical to AJs. Our results reveal how Par3/Baz CR3 can antagonize aPKC in stable apical Par complexes and suggests that modulation of CR3 inhibitory arms or opposing aPKC pockets would perturb the interaction, promoting Par3/Baz phosphorylation.


Asunto(s)
Uniones Adherentes/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Polaridad Celular/fisiología , Drosophila , Proteínas de Drosophila/genética , Epitelio/crecimiento & desarrollo , Células HCT116 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Fosforilación , Unión Proteica/genética , Estructura Terciaria de Proteína
20.
Curr Biol ; 25(1): 61-8, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25484300

RESUMEN

The Lethal giant larvae (Lgl) protein was discovered in Drosophila as a tumor suppressor in both neural stem cells (neuroblasts) and epithelia. In neuroblasts, Lgl relocalizes to the cytoplasm at mitosis, an event attributed to phosphorylation by mitotically activated aPKC kinase and thought to promote asymmetric cell division. Here we show that Lgl also relocalizes to the cytoplasm at mitosis in epithelial cells, which divide symmetrically. The Aurora A and B kinases directly phosphorylate Lgl to promote its mitotic relocalization, whereas aPKC kinase activity is required only for polarization of Lgl. A form of Lgl that is a substrate for aPKC, but not Aurora kinases, can restore cell polarity in lgl mutants but reveals defects in mitotic spindle orientation in epithelia. We propose that removal of Lgl from the plasma membrane at mitosis allows Pins/LGN to bind Dlg and thus orient the spindle in the plane of the epithelium. Our findings suggest a revised model for Lgl regulation and function in both symmetric and asymmetric cell divisions.


Asunto(s)
Aurora Quinasas/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliales/fisiología , Mitosis , Proteína Quinasa C/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Citoplasma/metabolismo , Drosophila , Células-Madre Neurales/fisiología , Fosforilación , Huso Acromático/fisiología , Alas de Animales/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA