Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(15): e111759, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35781819

RESUMEN

Analysis of functional deterioration of the blood system during ageing has been largely confined to the mouse and human system. In this issue, Emmrich et al (2022) report the first comprehensive characterisation of the haematopoietic system of the naked mole-rat (NMR), an exceptionally long-lived rodent, highlighting its unique features and uncovering potential strategies to sustain haematopoiesis during an extended lifetime.


Asunto(s)
Envejecimiento , Ratas Topo , Animales , Humanos , Longevidad , Ratones
2.
EMBO Rep ; 22(12): e52931, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661963

RESUMEN

Aging of hematopoietic stem cells (HSCs) is caused by the elevated activity of the small RhoGTPase Cdc42 and an apolar distribution of proteins. Mechanisms by which Cdc42 activity controls polarity of HSCs are not known. Binder of RhoGTPases proteins (Borgs) are known effector proteins of Cdc42 that are able to regulate the cytoskeletal Septin network. Here, we show that Cdc42 interacts with Borg4, which in turn interacts with Septin7 to regulate the polar distribution of Cdc42, Borg4, and Septin7 within HSCs. Genetic deletion of either Borg4 or Septin7 results in a reduced frequency of HSCs polar for Cdc42 or Borg4 or Septin7, a reduced engraftment potential and decreased lymphoid-primed multipotent progenitor (LMPP) frequency in the bone marrow. Taken together, our data identify a Cdc42-Borg4-Septin7 axis essential for the maintenance of polarity within HSCs and for HSC function and provide a rationale for further investigating the role of Borgs and Septins in the regulation of compartmentalization within stem cells.


Asunto(s)
Proteínas del Citoesqueleto , Células Madre Hematopoyéticas , Septinas , Proteínas de Unión al GTP rho , Células Madre Hematopoyéticas/metabolismo , Septinas/genética , Septinas/metabolismo , Transducción de Señal
3.
Stem Cells ; 39(8): 1101-1106, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33847429

RESUMEN

Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células de la Médula Ósea , Células Madre Hematopoyéticas/metabolismo , Rejuvenecimiento , Nicho de Células Madre
4.
Haematologica ; 107(2): 393-402, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440922

RESUMEN

In this study, we characterize age-related phenotypes of human hematopoietic stem cells (HSC). We report increased frequencies of HSC, hematopoietic progenitor cells and lineage negative cells in the elderly but a decreased frequency of multi-lymphoid progenitors. Aged human HSC further exhibited a delay in initiating division ex vivo though without changes in their division kinetics. The activity of the small RhoGTPase Cdc42 was elevated in aged human hematopoietic cells and we identified a positive correlation between Cdc42 activity and the frequency of HSC upon aging. The frequency of human HSC polar for polarity proteins was, similar to the mouse, decreased upon aging, while inhibition of Cdc42 activity via the specific pharmacological inhibitor of Cdc42 activity, CASIN, resulted in re-polarization of aged human HSC with respect to Cdc42. Elevated activity of Cdc42 in aged HSC thus contributed to age-related changes in HSC. Xenotransplant, using NBSGW mice as recipients, showed elevated chimerism in recipients of aged compared to young HSC. Aged HSC treated with CASIN ex vivo displayed an engraftment profile similar to recipients of young HSC. Taken together, our work reveals strong evidence for a role of elevated Cdc42 activity in driving aging of human HSC, and similar to mice, this presents a likely possibility for attenuation of aging in human HSC.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Anciano , Animales , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
5.
EMBO J ; 36(7): 840-853, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28254837

RESUMEN

Upon aging, hematopoietic stem cells (HSCs) undergo changes in function and structure, including skewing to myeloid lineages, lower reconstitution potential and loss of protein polarity. While stem cell intrinsic mechanisms are known to contribute to HSC aging, little is known on whether age-related changes in the bone marrow niche regulate HSC aging. Upon aging, the expression of osteopontin (OPN) in the murine bone marrow stroma is reduced. Exposure of young HSCs to an OPN knockout niche results in a decrease in engraftment, an increase in long-term HSC frequency and loss of stem cell polarity. Exposure of aged HSCs to thrombin-cleaved OPN attenuates aging of old HSCs, resulting in increased engraftment, decreased HSC frequency, increased stem cell polarity and a restored balance of lymphoid and myeloid cells in peripheral blood. Thus, our data suggest a critical role for reduced stroma-derived OPN for HSC aging and identify thrombin-cleaved OPN as a novel niche informed therapeutic approach for ameliorating HSC phenotypes associated with aging.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas/fisiología , Osteopontina/metabolismo , Animales , Ratones Endogámicos C57BL , Fenotipo
6.
Haematologica ; 105(1): 22-37, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31806687

RESUMEN

Hematopoietic stem cells (HSC) sustain blood production over the entire life-span of an organism. It is of extreme importance that these cells maintain self-renewal and differentiation potential over time in order to preserve homeostasis of the hematopoietic system. Many of the intrinsic aspects of HSC are affected by the aging process resulting in a deterioration in their potential, independently of their microenvironment. Here we review recent findings characterizing most of the intrinsic aspects of aged HSC, ranging from phenotypic to molecular alterations. Historically, DNA damage was thought to be the main cause of HSC aging. However, over recent years, many new findings have defined an increasing number of biological processes that intrinsically change with age in HSC. Epigenetics and chromatin architecture, together with autophagy, proteostasis and metabolic changes, and how they are interconnected, are acquiring growing importance for understanding the intrinsic aging of stem cells. Given the increase in populations of older subjects worldwide, and considering that aging is the primary risk factor for most diseases, understanding HSC aging becomes particularly relevant also in the context of hematologic disorders, such as myelodysplastic syndromes and acute myeloid leukemia. Research on intrinsic mechanisms responsible for HSC aging is providing, and will continue to provide, new potential molecular targets to possibly ameliorate or delay aging of the hematopoietic system and consequently improve the outcome of hematologic disorders in the elderly. The niche-dependent contributions to hematopoietic aging are discussed in another review in this same issue of the Journal.


Asunto(s)
Senescencia Celular , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Diferenciación Celular , Homeostasis , Humanos
7.
Stem Cells ; 37(7): 948-957, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30897261

RESUMEN

The prevailing view on murine hematopoiesis and on hematopoietic stem cells (HSCs) in particular derives from experiments that are related to regeneration after irradiation and HSC transplantation. However, over the past years, different experimental techniques have been developed to investigate hematopoiesis under homeostatic conditions, thereby providing access to proliferation and differentiation rates of hematopoietic stem and progenitor cells in the unperturbed situation. Moreover, it has become clear that hematopoiesis undergoes distinct changes during aging with large effects on HSC abundance, lineage contribution, asymmetry of division, and self-renewal potential. However, it is currently not fully resolved how stem and progenitor cells interact to respond to varying demands and how this balance is altered by an aging-induced shift in HSC polarity. Aiming toward a conceptual understanding, we introduce a novel in silico model to investigate the dynamics of HSC response to varying demand. By introducing an internal feedback within a heterogeneous HSC population, the model is suited to consistently describe both hematopoietic homeostasis and regeneration, including the limited regulation of HSCs in the homeostatic situation. The model further explains the age-dependent increase in phenotypic HSCs as a consequence of the cells' inability to preserve divisional asymmetry. Our model suggests a dynamically regulated population of intrinsically asymmetrically dividing HSCs as suitable control mechanism that adheres with many qualitative and quantitative findings on hematopoietic recovery after stress and aging. The modeling approach thereby illustrates how a mathematical formalism can support both the conceptual and the quantitative understanding of regulatory principles in HSC biology.


Asunto(s)
Envejecimiento/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Homeostasis/genética , Modelos Teóricos , Animales , Diferenciación Celular , División Celular , Linaje de la Célula/genética , Proliferación Celular , Senescencia Celular/genética , Simulación por Computador , Células Madre Hematopoyéticas/citología , Ratones , Estrés Fisiológico
8.
Nature ; 503(7476): 392-6, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24141946

RESUMEN

Many organs with a high cell turnover (for example, skin, intestine and blood) are composed of short-lived cells that require continuous replenishment by somatic stem cells. Ageing results in the inability of these tissues to maintain homeostasis and it is believed that somatic stem-cell ageing is one underlying cause of tissue attrition with age or age-related diseases. Ageing of haematopoietic stem cells (HSCs) is associated with impaired haematopoiesis in the elderly. Despite a large amount of data describing the decline of HSC function on ageing, the molecular mechanisms of this process remain largely unknown, which precludes rational approaches to attenuate stem-cell ageing. Here we report an unexpected shift from canonical to non-canonical Wnt signalling in mice due to elevated expression of Wnt5a in aged HSCs, which causes stem-cell ageing. Wnt5a treatment of young HSCs induces ageing-associated stem-cell apolarity, reduction of regenerative capacity and an ageing-like myeloid-lymphoid differentiation skewing via activation of the small Rho GTPase Cdc42. Conversely, Wnt5a haploinsufficiency attenuates HSC ageing, whereas stem-cell-intrinsic reduction of Wnt5a expression results in functionally rejuvenated aged HSCs. Our data demonstrate a critical role for stem-cell-intrinsic non-canonical Wnt5a signalling in HSC ageing.


Asunto(s)
Senescencia Celular , Células Madre Hematopoyéticas/citología , Vía de Señalización Wnt , Animales , Diferenciación Celular , Polaridad Celular , Femenino , Haploinsuficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Rejuvenecimiento , Proteínas Wnt/deficiencia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , Proteína de Unión al GTP cdc42/metabolismo
9.
Trends Immunol ; 36(12): 815-824, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26611154

RESUMEN

Aging-associated changes in the function of the immune system are referred to as senescent immune remodeling (SIR). Here we review the current understanding on the cellular and molecular mechanisms underlying SIR. We focus on aging-associated changes in T and B cells, and discuss recent evidence supporting the notion that aging of the hematopoietic stem cell (HSC) compartment directly contributes to SIR due to aging-associated alterations in stem cell differentiation. We conclude by outlining strategies to attenuate SIR, including approaches to rejuvenate HSCs, which may open new avenues for targeting SIR in the clinic.


Asunto(s)
Senescencia Celular/inmunología , Células Madre Hematopoyéticas/inmunología , Sistema Inmunológico/inmunología , Animales , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Humanos , Linfocitos T/inmunología
11.
Proc Natl Acad Sci U S A ; 108(24): 9957-62, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21653884

RESUMEN

The stem-cell pool is considered to be maintained by a balance between symmetric and asymmetric division of stem cells. The cell polarity model proposes that the facultative use of symmetric and asymmetric cell division is orchestrated by a polarity complex consisting of partitioning-defective proteins Par3 and Par6, and atypical protein kinase C (aPKCζ and aPKCλ), which regulates planar symmetry of dividing stem cells with respect to the signaling microenvironment. However, the role of the polarity complex is unexplored in mammalian adult stem-cell functions. Here we report that, in contrast to accepted paradigms, polarization and activity of adult hematopoietic stem cell (HSC) do not depend on either aPKCζ or aPKCλ or both in vivo. Mice, having constitutive and hematopoietic-specific (Vav1-Cre) deletion of aPKCζ and aPKCλ, respectively, have normal hematopoiesis, including normal HSC self-renewal, engraftment, differentiation, and interaction with the bone marrow microenvironment. Furthermore, inducible complete deletion of aPKCλ (Mx1-Cre) in aPKCζ(-/-) HSC does not affect HSC polarization, self-renewal, engraftment, or lineage repopulation. In addition, aPKCζ- and aPKCλ-deficient HSCs elicited a normal pattern of hematopoietic recovery secondary to myeloablative stress. Taken together, the expression of aPKCζ, aPKCλ, or both are dispensable for primitive and adult HSC fate determination in steady-state and stress hematopoiesis, contrary to the hypothesis of a unique, evolutionary conserved aPKCζ/λ-directed cell polarity signaling mechanism in mammalian HSC fate determination.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteína Quinasa C/deficiencia , Animales , Diferenciación Celular , Linaje de la Célula , Polaridad Celular , Proliferación Celular , Femenino , Citometría de Flujo , Expresión Génica , Trasplante de Células Madre Hematopoyéticas/métodos , Isoenzimas/deficiencia , Isoenzimas/genética , Masculino , Ratones , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa C/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
12.
Nat Commun ; 15(1): 1604, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383534

RESUMEN

Hematopoietic stem cells (HSCs) develop from the hemogenic endothelium (HE) in the aorta- gonads-and mesonephros (AGM) region and reside within Intra-aortic hematopoietic clusters (IAHC) along with hematopoietic progenitors (HPC). The signalling mechanisms that distinguish HSCs from HPCs are unknown. Notch signaling is essential for arterial specification, IAHC formation and HSC activity, but current studies on how Notch segregates these different fates are inconsistent. We now demonstrate that Notch activity is highest in a subset of, GFI1 + , HSC-primed HE cells, and is gradually lost with HSC maturation. We uncover that the HSC phenotype is maintained due to increasing levels of NOTCH1 and JAG1 interactions on the surface of the same cell (cis) that renders the NOTCH1 receptor from being activated. Forced activation of the NOTCH1 receptor in IAHC activates a hematopoietic differentiation program. Our results indicate that NOTCH1-JAG1 cis-inhibition preserves the HSC phenotype in the hematopoietic clusters of the embryonic aorta.


Asunto(s)
Células Madre Hematopoyéticas , Receptor Notch1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/genética , Aorta/metabolismo , Arterias/metabolismo , Mesonefro , Gónadas/metabolismo
13.
STAR Protoc ; 3(3): 101483, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35769923

RESUMEN

Quantitative 3D imaging of organ-wide cellular and subcellular components is central for revealing and understanding complex interactions between stem cells and their microenvironment. Here, we present a gentle but fast whole-mount immunofluorescence staining protocol for 3D confocal microscopy (iFAST3D) that preserves the 3D structure of the entire tissue and that of subcellular structures with high fidelity. The iFAST3D protocol enables reproducible and high-resolution 3D imaging of stem cells and various niche components for many mouse organs and tissues. For complete details on the use and execution of this protocol, please refer to Saçma et al. (2019).


Asunto(s)
Imagenología Tridimensional , Células Madre , Animales , Imagenología Tridimensional/métodos , Ratones , Microscopía Confocal/métodos , Coloración y Etiquetado
14.
Cell Stem Cell ; 29(8): 1273-1284.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35858618

RESUMEN

Hematopoietic stem cells (HSCs) mediate regeneration of the hematopoietic system following injury, such as following infection or inflammation. These challenges impair HSC function, but whether this functional impairment extends beyond the duration of inflammatory exposure is unknown. Unexpectedly, we observed an irreversible depletion of functional HSCs following challenge with inflammation or bacterial infection, with no evidence of any recovery up to 1 year afterward. HSCs from challenged mice demonstrated multiple cellular and molecular features of accelerated aging and developed clinically relevant blood and bone marrow phenotypes not normally observed in aged laboratory mice but commonly seen in elderly humans. In vivo HSC self-renewal divisions were absent or extremely rare during both challenge and recovery periods. The progressive, irreversible attrition of HSC function demonstrates that temporally discrete inflammatory events elicit a cumulative inhibitory effect on HSCs. This work positions early/mid-life inflammation as a mediator of lifelong defects in tissue maintenance and regeneration.


Asunto(s)
Hematopoyesis , Células Madre Hematopoyéticas , Anciano , Envejecimiento , Animales , Médula Ósea , Humanos , Inflamación , Ratones
15.
Stem Cells ; 28(9): 1623-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20641041

RESUMEN

Adult somatic stem cells are central to homeostasis in tissues that present with a high cellular turnover like the skin, intestine, and the hematopoietic system. It is thought that polarity is particularly important with respect to fate decisions on stem cell division (symmetric or asymmetric) as well as for the maintenance of stem cell adhesion and quiescence (interaction with the niche). Consequently the failure to establish or regulate stem cell polarity might result in disease or tissue attrition. Members of the family of small RhoGTPases are known to exert an important role in regulating cell polarity. We summarize and discuss here recent views on the role of cell polarity in somatic stem cell function, aging, and disease, concluding that targeting cell polarity might be a novel approach to ameliorate or even revert aberrant somatic stem cell function.


Asunto(s)
Células Madre Adultas/enzimología , Envejecimiento/metabolismo , Polaridad Celular , Senescencia Celular , Proteína de Unión al GTP cdc42/metabolismo , Células Madre Adultas/patología , Envejecimiento/patología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Humanos , Neoplasias/enzimología , Neoplasias/patología , Transducción de Señal
16.
Stem Cell Reports ; 16(4): 708-716, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33798450

RESUMEN

During X chromosome inactivation (XCI), the inactive X chromosome (Xi) is recruited to the nuclear lamina at the nuclear periphery. Beside X chromosome reactivation resulting in a highly penetrant aging-like hematopoietic malignancy, little is known about XCI in aged hematopoietic stem cells (HSCs). Here, we demonstrate that LaminA/C defines a distinct repressive nuclear compartment for XCI in young HSCs, and its reduction in aged HSCs correlates with an impairment in the overall control of XCI. Integrated omics analyses reveal higher variation in gene expression, global hypomethylation, and significantly increased chromatin accessibility on the X chromosome (Chr X) in aged HSCs. In summary, our data support the role of LaminA/C in the establishment of a special repressive compartment for XCI in HSCs, which is impaired upon aging.


Asunto(s)
Senescencia Celular/genética , Células Madre Hematopoyéticas/metabolismo , Inactivación del Cromosoma X/genética , Animales , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Humanos , Lamina Tipo A/metabolismo , Ratones Endogámicos C57BL , Transposasas/metabolismo , Cromosoma X/genética
17.
Aging (Albany NY) ; 13(4): 4778-4793, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33629967

RESUMEN

Normal hair growth occurs in cycles, comprising growth (anagen), cessation (catagen) and rest (telogen). Upon aging, the initiation of anagen is significantly delayed, which results in impaired hair regeneration. Hair regeneration is driven by hair follicle stem cells (HFSCs). We show here that aged HFSCs present with a decrease in canonical Wnt signaling and a shift towards non-canonical Wnt5a driven signaling which antagonizes canonical Wnt signaling. Elevated expression of Wnt5a in HFSCs upon aging results in elevated activity of the small RhoGTPase Cdc42 as well as a change in the spatial distribution of Cdc42 within HFSCs. Treatment of aged HFSC with a specific pharmacological inhibitor of Cdc42 activity termed CASIN to suppress the aging-associated elevated activity of Cdc42 restored canonical Wnt signaling in aged HFSCs. Treatment of aged mice in vivo with CASIN induced anagen onset and increased the percentage of anagen skin areas. Aging-associated functional deficits of HFSCs are at least in part intrinsic to HFSCs and can be restored by rational pharmacological approaches.


Asunto(s)
Folículo Piloso/crecimiento & desarrollo , Rejuvenecimiento/fisiología , Células Madre/metabolismo , Vía de Señalización Wnt , Proteína Wnt-5a/genética , Animales , Senescencia Celular/fisiología , Ratones
18.
FASEB J ; 23(12): 4276-87, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19713529

RESUMEN

MicroRNAs are a class of sophisticated regulators of gene expression, acting as post-transcriptional inhibitors that recognize their target mRNAs through base pairing with short regions along the 3'UTRs. Several microRNAs are tissue specific, suggesting a specialized role in tissue differentiation or maintenance, and quite a few are critically involved in tumorigenesis. We studied miR-128, a brain-enriched microRNA, in retinoic acid-differentiated neuroblastoma cells, and we found that this microRNA is up-regulated in treated cells, where it down-modulates the expression of two proteins involved in the migratory potential of neural cells: Reelin and DCX. Consistently, miR-128 ectopic overexpression suppressed Reelin and DCX, whereas the LNA antisense-mediated miR-128 knockdown caused the two proteins to increase. Ectopic miR-128 overexpression reduced neuroblastoma cell motility and invasiveness, and impaired cell growth. Finally, the analysis of a small series of primary human neuroblastomas showed an association between high levels of miR-128 expression and favorable features, such as favorable Shimada category or very young age at diagnosis. Thus, we provide evidence for a role for miR-128 in the molecular events modulating neuroblastoma progression and aggressiveness.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/fisiología , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuropéptidos/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Bases , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Proteínas de la Matriz Extracelular/genética , Humanos , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Invasividad Neoplásica , Proteínas del Tejido Nervioso/genética , Neuroblastoma/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuropéptidos/genética , Proteína Reelina , Serina Endopeptidasas/genética , Tretinoina/farmacología
19.
Aging Cell ; 19(9): e13208, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755011

RESUMEN

Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain-of-activity mouse model presents with a premature aging-like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75-week-old) female C57BL/6 mice with a Cdc42 activity-specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN-treated animals displayed a youthful level of the aging-associated cytokines IL-1ß, IL-1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.


Asunto(s)
Citocinas/metabolismo , Proteína de Unión al GTP cdc42/genética , Envejecimiento , Animales , Proteínas de Drosophila , Femenino , Cadenas alfa de Integrinas , Longevidad , Ratones , Ratones Endogámicos C57BL
20.
Nat Commun ; 11(1): 821, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32041953

RESUMEN

The diversity of the naïve T cell repertoire drives the replenishment potential and capacity of memory T cells to respond to immune challenges. Attrition of the immune system is associated with an increased prevalence of pathologies in aged individuals, but whether stem cell memory T lymphocytes (TSCM) contribute to such attrition is still unclear. Using single cells RNA sequencing and high-dimensional flow cytometry, we demonstrate that TSCM heterogeneity results from differential engagement of Wnt signaling. In humans, aging is associated with the coupled loss of Wnt/ß-catenin signature in CD4 TSCM and systemic increase in the levels of Dickkopf-related protein 1, a natural inhibitor of the Wnt/ß-catenin pathway. Functional assays support recent thymic emigrants as the precursors of CD4 TSCM. Our data thus hint that reversing TSCM defects by metabolic targeting of the Wnt/ß-catenin pathway may be a viable approach to restore and preserve immune homeostasis in the context of immunological history.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Precursoras de Linfocitos T/inmunología , Vía de Señalización Wnt/inmunología , Envejecimiento/inmunología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Perfilación de la Expresión Génica , Infecciones por VIH/inmunología , Humanos , Memoria Inmunológica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Timo/inmunología , Vía de Señalización Wnt/genética , beta Catenina/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA