Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Genet ; 11(3): e1005063, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25803043

RESUMEN

Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/genética , Glucosilceramidas/genética , Metabolismo de los Lípidos/genética , beta-Glucosidasa/genética , Actinas/química , Animales , Membrana Celular/metabolismo , Membrana Celular/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Fibroblastos/metabolismo , Glucosilceramidas/química , Glucosilceramidas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patología , Seudópodos/genética , Seudópodos/metabolismo , Seudópodos/patología , Células de Sertoli/metabolismo , Células de Sertoli/patología , beta-Glucosidasa/metabolismo
2.
Nat Rev Neurosci ; 9(2): 136-47, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18209731

RESUMEN

Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Movimiento Celular/fisiología , Sistema Nervioso Central/citología , Conos de Crecimiento/ultraestructura , Humanos , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología
3.
J Neurosci ; 30(20): 6930-43, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20484635

RESUMEN

Neuronal migration and axon growth, key events during neuronal development, require distinct changes in the cytoskeleton. Although many molecular regulators of polarity have been identified and characterized, relatively little is known about their physiological role in this process. To study the physiological function of Rac1 in neuronal development, we have generated a conditional knock-out mouse, in which Rac1 is ablated in the whole brain. Rac1-deficient cerebellar granule neurons, which do not express other Rac isoforms, showed impaired neuronal migration and axon formation both in vivo and in vitro. In addition, Rac1 ablation disrupts lamellipodia formation in growth cones. The analysis of Rac1 effectors revealed the absence of the Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous protein (WAVE) complex from the plasma membrane of knock-out growth cones. Loss of WAVE function inhibited axon growth, whereas overexpression of a membrane-tethered WAVE mutant partially rescued axon growth in Rac1-knock-out neurons. In addition, pharmacological inhibition of the WAVE complex effector Arp2/3 also reduced axon growth. We propose that Rac1 recruits the WAVE complex to the plasma membrane to enable actin remodeling necessary for axon growth.


Asunto(s)
Movimiento Celular/fisiología , Neuronas/fisiología , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína 2 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Angiopoyetinas/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Axones/efectos de los fármacos , Axones/metabolismo , Bromodesoxiuridina/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cofilina 1/metabolismo , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática/métodos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Antígeno Ki-67/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones Noqueados , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos/métodos , Interferencia de ARN/fisiología , ARN Interferente Pequeño/farmacología , Transfección/métodos , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/deficiencia , Proteína de Unión al GTP rhoA/metabolismo
4.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31400829

RESUMEN

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Cofilina 1/genética , Cofilina 2/genética , Destrina/genética , Conos de Crecimiento/patología , Regeneración Nerviosa/genética , Traumatismos de la Médula Espinal/genética , Animales , Axones/patología , Cofilina 1/metabolismo , Cofilina 2/metabolismo , Destrina/metabolismo , Conos de Crecimiento/metabolismo , Microscopía Intravital , Ratones , Microscopía Confocal , Neuronas/metabolismo , Neuronas/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Imagen de Lapso de Tiempo
5.
J Neurosci ; 27(48): 13117-29, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18045906

RESUMEN

The establishment of polarity is an essential process in early neuronal development. Although a number of molecules controlling neuronal polarity have been identified, genetic evidence about their physiological roles in this process is mostly lacking. We analyzed the consequences of loss of Cdc42, a central regulator of polarity in multiple systems, on the polarization of mammalian neurons. Genetic ablation of Cdc42 in the brain led to multiple abnormalities, including striking defects in the formation of axonal tracts. Neurons from the Cdc42 null animals sprouted neurites but had a strongly suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating that the effects of Cdc42 ablation are exerted through modulation of actin dynamics. In addition, the knock-outs showed a specific increase in the phosphorylation (inactivation) of the Cdc42 effector cofilin. Furthermore, the active, nonphosphorylated form of cofilin was enriched in the axonal growth cones of wild-type, but not of mutant, neurons. Importantly, cofilin knockdown resulted in polarity defects quantitatively analogous to the ones seen after Cdc42 ablation. We conclude that Cdc42 is a key regulator of axon specification, and that cofilin is a physiological downstream effector of Cdc42 in this process.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Neuronas/fisiología , Proteína de Unión al GTP cdc42/fisiología , Actinas/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Animales , Apoptosis/fisiología , Axones/fisiología , Polaridad Celular/efectos de los fármacos , Polaridad Celular/fisiología , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos , Fosforilación , Interferencia de ARN/fisiología , Proteína de Unión al GTP cdc42/deficiencia
7.
Science ; 348(6232): 347-52, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25765066

RESUMEN

After central nervous system (CNS) injury, inhibitory factors in the lesion scar and poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier-permeable microtubule-stabilizing drug, epothilone B (epoB), decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug-elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.


Asunto(s)
Axones/efectos de los fármacos , Cicatriz/prevención & control , Epotilonas/administración & dosificación , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Moduladores de Tubulina/administración & dosificación , Animales , Axones/fisiología , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Cicatriz/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Meninges/efectos de los fármacos , Meninges/patología , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
8.
Bioarchitecture ; 3(4): 86-109, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24002528

RESUMEN

Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis­neuritogenesis.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Animales , Humanos , Morfogénesis , Neuronas/citología
9.
Neuron ; 76(6): 1091-107, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23259946

RESUMEN

Neurites are the characteristic structural element of neurons that will initiate brain connectivity and elaborate information. Early in development, neurons are spherical cells but this symmetry is broken through the initial formation of neurites. This fundamental step is thought to rely on actin and microtubule dynamics. However, it is unclear which aspects of the complex actin behavior control neuritogenesis and which molecular mechanisms are involved. Here, we demonstrate that augmented actin retrograde flow and protrusion dynamics facilitate neurite formation. Our data indicate that a single family of actin regulatory proteins, ADF/Cofilin, provides the required control of actin retrograde flow and dynamics to form neurites. In particular, the F-actin severing activity of ADF/Cofilin organizes space for the protrusion and bundling of microtubules, the backbone of neurites. Our data reveal how ADF/Cofilin organizes the cytoskeleton to drive actin retrograde flow and thus break the spherical shape of neurons.


Asunto(s)
Factores Despolimerizantes de la Actina/fisiología , Actinas/metabolismo , Forma de la Célula/fisiología , Corteza Cerebral/embriología , Destrina/fisiología , Conos de Crecimiento/metabolismo , Neuritas/metabolismo , Animales , Transporte Biológico , Procesos de Crecimiento Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Hipocampo/citología , Hipocampo/embriología , Técnicas In Vitro , Ratones , Ratones Noqueados , Microtúbulos/fisiología , Neurogénesis/fisiología
10.
Science ; 331(6019): 928-31, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21273450

RESUMEN

Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-ß signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.


Asunto(s)
Axones/fisiología , Cicatriz/prevención & control , Microtúbulos/metabolismo , Paclitaxel/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal , Animales , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cicatriz/patología , Femenino , Ganglios Espinales/citología , Cinesinas/metabolismo , Microtúbulos/efectos de los fármacos , Paclitaxel/farmacología , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/fisiología , Transducción de Señal , Proteína Smad2/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Traumatismos de la Médula Espinal/patología , Factor de Crecimiento Transformador beta/metabolismo
11.
Dev Neurobiol ; 70(8): 565-88, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20506164

RESUMEN

Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Quimiotaxis/fisiología , Conos de Crecimiento/fisiología , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuronas/fisiología , Proteínas Supresoras de Tumor/metabolismo , Actinas/metabolismo , Proteínas Anfibias/metabolismo , Animales , Proteínas Aviares/metabolismo , Membrana Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Embrión de Pollo , Espacio Extracelular/metabolismo , Ganglios Espinales/embriología , Ganglios Espinales/fisiología , Técnicas In Vitro , Netrina-1 , Fosforilación , Multimerización de Proteína , Neuronas Retinianas/fisiología , Médula Espinal/embriología , Médula Espinal/fisiología , Xenopus laevis
12.
Dev Neurobiol ; 69(12): 761-79, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19513994

RESUMEN

Axonogenesis involves a shift from uniform delivery of materials to all neurites to preferential delivery to the putative axon, supporting its more rapid extension. Waves, growth cone-like structures that propagate down the length of neurites, were shown previously to correlate with neurite growth in dissociated cultured hippocampal neurons. Waves are similar to growth cones in their structure, composition and dynamics. Here, we report that waves form in all undifferentiated neurites, but occur more frequently in the future axon during initial neuronal polarization. Moreover, wave frequency and their impact on neurite growth are altered in neurons treated with stimuli that enhance axonogenesis. Coincident with wave arrival, growth cones enlarge and undergo a marked increase in dynamics. Through their engorgement of filopodia along the neurite shaft, waves can induce de novo neurite branching. Actin in waves maintains much of its cohesiveness during transport whereas actin in nonwave regions of the neurite rapidly diffuses as measured by live cell imaging of photoactivated GFP-actin and photoconversion of Dendra-actin. Thus, waves represent an alternative axonal transport mechanism for actin. Waves also occur in neurons in organotypic hippocampal slices where they propagate along neurites in the dentate gyrus and the CA regions and induce branching. Taken together, our results indicate that waves are physiologically relevant and contribute to axon growth and branching via the transport of actin and by increasing growth cone dynamics.


Asunto(s)
Axones/fisiología , Conos de Crecimiento/fisiología , Neuritas/fisiología , Neuronas/citología , Actinas/metabolismo , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Movimiento Celular/fisiología , Células Cultivadas , Técnicas de Transferencia de Gen , Conos de Crecimiento/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Microscopía Confocal , Neuritas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Ratas
13.
J Alzheimers Dis ; 18(1): 35-50, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19542631

RESUMEN

Dissociated hippocampal neurons exposed to a variety of degenerative stimuli form neuritic cofilin-actin rods. Here we report on stimulus driven regional rod formation in organotypic hippocampal slices. Ultrastructural analysis of rods formed in slices demonstrates mitochondria and vesicles become entrapped within some rods. We developed a template for combining and mapping data from multiple slices, enabling statistical analysis for the identification of vulnerable sub-regions. Amyloid-beta (Abeta) induces rods predominantly in the dentate gyrus region, and Abeta-induced rods are reversible following washout. Rods that persist 24 h following transient (30 min) ATP-depletion are broadly distributed, whereas rods formed in response to excitotoxic glutamate localize within and nearby the pyramidal neurons. Time-lapse imaging of cofilin-GFP-expressing neurons within slices shows neuronal rod formation begins rapidly and peaks by 10 min of anoxia. In approximately 50% of responding neurons, Abeta-induced rod formation acts via cdc42, an upstream regulator of cofilin. These new observations support a role for cofilin-actin rods in stress-induced disruption of cargo transport and synaptic function within hippocampal neurons and suggest both cdc42-dependent and independent pathways modulate cofilin activity downstream from Abeta.


Asunto(s)
Actinas/ultraestructura , Péptidos beta-Amiloides/toxicidad , Mapeo Encefálico/métodos , Cofilina 1/ultraestructura , Hipocampo/ultraestructura , Proteína de Unión al GTP cdc42/fisiología , Actinas/fisiología , Animales , Pollos , Cofilina 1/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas/fisiología , Neuronas/ultraestructura , Técnicas de Cultivo de Órganos , Embarazo , Conejos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Estrés Fisiológico , Sinapsis/metabolismo , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA