Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 22(6): 711-722, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34017121

RESUMEN

Chromatin undergoes extensive reprogramming during immune cell differentiation. Here we report the repression of controlled histone H3 amino terminus proteolytic cleavage (H3ΔN) during monocyte-to-macrophage development. This abundant histone mark in human peripheral blood monocytes is catalyzed by neutrophil serine proteases (NSPs) cathepsin G, neutrophil elastase and proteinase 3. NSPs are repressed as monocytes mature into macrophages. Integrative epigenomic analysis reveals widespread H3ΔN distribution across the genome in a monocytic cell line and primary monocytes, which becomes largely undetectable in fully differentiated macrophages. H3ΔN is enriched at permissive chromatin and actively transcribed genes. Simultaneous NSP depletion in monocytic cells results in H3ΔN loss and further increase in chromatin accessibility, which likely primes the chromatin for gene expression reprogramming. Importantly, H3ΔN is reduced in monocytes from patients with systemic juvenile idiopathic arthritis, an autoinflammatory disease with prominent macrophage involvement. Overall, we uncover an epigenetic mechanism that primes the chromatin to facilitate macrophage development.


Asunto(s)
Artritis Juvenil/inmunología , Diferenciación Celular/inmunología , Epigénesis Genética/inmunología , Histonas/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/inmunología , Adolescente , Artritis Juvenil/sangre , Artritis Juvenil/genética , Sistemas CRISPR-Cas/genética , Catepsina G/genética , Catepsina G/metabolismo , Diferenciación Celular/genética , Núcleo Celular/metabolismo , Niño , Preescolar , Cromatina/metabolismo , Pruebas de Enzimas , Epigenómica , Femenino , Técnicas de Inactivación de Genes , Humanos , Células Jurkat , Elastasa de Leucocito/genética , Elastasa de Leucocito/metabolismo , Leucocitos Mononucleares/inmunología , Macrófagos/metabolismo , Masculino , Mieloblastina/genética , Mieloblastina/metabolismo , Cultivo Primario de Células , Proteolisis , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células THP-1 , Adulto Joven
2.
Elife ; 122024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226689

RESUMEN

While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here, we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Embarazo , Masculino , Femenino , Ratones , Animales , Glucocorticoides/farmacología , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción , Células Germinativas/metabolismo , Oocitos/metabolismo , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37425891

RESUMEN

While physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models. These hormones are known to bind and activate the glucocorticoid receptor (GR), a ligand-inducible transcription factor, thus implicating GR-mediated signaling as a potential contributor to the transgenerational inheritance of stress-induced phenotypes. Here we demonstrate dynamic spatiotemporal regulation of GR expression in the mouse germline, showing expression in the fetal oocyte as well as the perinatal and adult spermatogonia. Functionally, we find that fetal oocytes are intrinsically buffered against changes in GR signaling, as neither genetic deletion of GR nor GR agonism with dexamethasone altered the transcriptional landscape or the progression of fetal oocytes through meiosis. In contrast, our studies revealed that the male germline is susceptible to glucocorticoid-mediated signaling, specifically by regulating RNA splicing within the spermatogonia, although this does not abrogate fertility. Together, our work suggests a sexually dimorphic function for GR in the germline, and represents an important step towards understanding the mechanisms by which stress can modulate the transmission of genetic information through the germline.

4.
Methods Mol Biol ; 2677: 203-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464244

RESUMEN

Recent advances in tissue clearing methodologies have enabled three-dimensional (3D) visualization of the ovary and, consequently, in-depth exploration of the dynamic changes occurring at the single-cell level. Here we describe methods for whole-mount immunofluorescence, clearing, imaging, and analysis of whole ovarian tissue in 3D throughout murine development and aging.


Asunto(s)
Imagenología Tridimensional , Ovario , Femenino , Ratones , Animales , Imagenología Tridimensional/métodos , Técnica del Anticuerpo Fluorescente , Envejecimiento
5.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606045

RESUMEN

Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities. Cell composition, signaling, epigenetics, and proteomics were evaluated by mass cytometry; droplet-based single-cell transcriptomics and proteomics; and bead-based multiplex soluble mediator levels in plasma. We observed altered whole blood frequencies and enhanced activity in CD8+ T cells, B cells, monocytes, and DCs in Black patients with more active disease. Epigenetic modifications in CD8+ T cells (H3K27ac) could distinguish disease activity level in Black patients and differentiate Black from White patient samples. TLR3/4/7/8/9-related gene expression was elevated in immune cells from Black patients with SLE, and TLR7/8/9 and IFN-α phospho-signaling and cytokine responses were heightened even in immune cells from healthy Black control patients compared with White individuals. TLR stimulation of healthy immune cells recapitulated the ancestry-associated SLE immunophenotypes. This multiomic resource defines ancestry-associated immune phenotypes that differ between Black and White patients with SLE, which may influence the course and severity of SLE and other diseases.


Asunto(s)
Linfocitos B , Lupus Eritematoso Sistémico , Femenino , Humanos , Población Negra , Linfocitos T CD8-positivos , Lupus Eritematoso Sistémico/genética , Fenotipo , Población Blanca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA