Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 28(8): 1331-1342, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30576442

RESUMEN

X chromosome inactivation (XCI) is a key epigenetic gene expression regulatory process, which may play a role in women's cancer. In particular tissues, some genes are known to escape XCI, yet patterns of XCI in ovarian cancer (OC) and their clinical associations are largely unknown. To examine XCI in OC, we integrated germline genotype with tumor copy number, gene expression and DNA methylation information from 99 OC patients. Approximately 10% of genes showed different XCI status (either escaping or being subject to XCI) compared with the studies of other tissues. Many of these genes are known oncogenes or tumor suppressors (e.g. DDX3X, TRAPPC2 and TCEANC). We also observed strong association between cis promoter DNA methylation and allele-specific expression imbalance (P = 2.0 × 10-10). Cluster analyses of the integrated data identified two molecular subgroups of OC patients representing those with regulated (N = 47) and dysregulated (N = 52) XCI. This XCI cluster membership was associated with expression of X inactive specific transcript (P = 0.002), a known driver of XCI, as well as age, grade, stage, tumor histology and extent of residual disease following surgical debulking. Patients with dysregulated XCI (N = 52) had shorter time to recurrence (HR = 2.34, P = 0.001) and overall survival time (HR = 1.87, P = 0.02) than those with regulated XCI, although results were attenuated after covariate adjustment. Similar findings were observed when restricted to high-grade serous tumors. We found evidence of a unique OC XCI profile, suggesting that XCI may play an important role in OC biology. Additional studies to examine somatic changes with paired tumor-normal tissue are needed.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Genes Ligados a X/genética , Inactivación del Cromosoma X/fisiología , Anciano , Alelos , Carcinoma Epitelial de Ovario/metabolismo , Cromosomas Humanos X/genética , Análisis por Conglomerados , Metilación de ADN/genética , Epigénesis Genética/genética , Femenino , Regulación de la Expresión Génica/genética , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante , Factores de Transcripción/genética , Inactivación del Cromosoma X/genética
2.
Acta Neuropathol ; 137(6): 879-899, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739198

RESUMEN

Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteinopatías TDP-43/genética , Anciano , Expansión de las Repeticiones de ADN , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Femenino , Lóbulo Frontal/metabolismo , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/inmunología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Antígenos HLA-DQ/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mutación con Pérdida de Función , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/fisiología , Canales de Potasio/genética , Progranulinas/genética , Progranulinas/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas/genética , Proteínas/fisiología , ARN Mensajero/biosíntesis , Factores de Riesgo , Análisis de Secuencia de ARN , Sociedades Científicas , Proteinopatías TDP-43/inmunología , Población Blanca/genética
3.
Genet Epidemiol ; 41(8): 898-914, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29119601

RESUMEN

X-chromosome inactivation (XCI) epigenetically silences transcription of an X chromosome in females; patterns of XCI are thought to be aberrant in women's cancers, but are understudied due to statistical challenges. We develop a two-stage statistical framework to assess skewed XCI and evaluate gene-level patterns of XCI for an individual sample by integration of RNA sequence, copy number alteration, and genotype data. Our method relies on allele-specific expression (ASE) to directly measure XCI and does not rely on male samples or paired normal tissue for comparison. We model ASE using a two-component mixture of beta distributions, allowing estimation for a given sample of the degree of skewness (based on a composite likelihood ratio test) and the posterior probability that a given gene escapes XCI (using a Bayesian beta-binomial mixture model). To illustrate the utility of our approach, we applied these methods to data from tumors of ovarian cancer patients. Among 99 patients, 45 tumors were informative for analysis and showed evidence of XCI skewed toward a particular parental chromosome. For 397 X-linked genes, we observed tumor XCI patterns largely consistent with previously identified consensus states based on multiple normal tissue types. However, 37 genes differed in XCI state between ovarian tumors and the consensus state; 17 genes aberrantly escaped XCI in ovarian tumors (including many oncogenes), whereas 20 genes were unexpectedly inactivated in ovarian tumors (including many tumor suppressor genes). These results provide evidence of the importance of XCI in ovarian cancer and demonstrate the utility of our two-stage analysis.


Asunto(s)
Neoplasias Glandulares y Epiteliales/genética , Neoplasias Ováricas/genética , Adulto , Alelos , Teorema de Bayes , Carcinoma Epitelial de Ovario , Cromosomas Humanos X , Femenino , Genes Ligados a X , Genotipo , Humanos , Modelos Genéticos , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Polimorfismo de Nucleótido Simple , ARN Neoplásico/química , ARN Neoplásico/aislamiento & purificación , ARN Neoplásico/metabolismo , Análisis de Secuencia de ARN , Inactivación del Cromosoma X
4.
Genes Chromosomes Cancer ; 56(3): 177-184, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27636879

RESUMEN

MicroRNAs (miRNAs) regulate up to one-third of all protein-coding genes including genes relevant to cancer. Variants within miRNAs have been reported to be associated with prognosis, survival, response to chemotherapy across cancer types, in vitro parameters of cell growth, and altered risks for development of cancer. Five miRNA variants have been reported to be associated with risk for development of colorectal cancer (CRC). In this study, we evaluated germline genetic variation in 1,123 miRNAs in 899 individuals with CRCs categorized by clinical subtypes and in 204 controls. The role of common miRNA variation in CRC was investigated using single variant and miRNA-level association tests. Twenty-nine miRNAs and 30 variants exhibited some marginal association with CRC in at least one subtype of CRC. Previously reported associations were not confirmed (n = 4) or could not be evaluated (n = 1). The variants noted for the CRCs with deficient mismatch repair showed little overlap with the variants noted for CRCs with proficient mismatch repair, consistent with our evolving understanding of the distinct biology underlying these two groups. © 2016 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Variación Genética/genética , Mutación de Línea Germinal/genética , MicroARNs/genética , Estudios de Casos y Controles , Estudios de Seguimiento , Humanos , Estadificación de Neoplasias , Pronóstico , Factores de Riesgo
5.
Tumour Biol ; 37(10): 13279-13286, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27460076

RESUMEN

The tumor-associated inflammatory microenvironment may play a pivotal role in epithelial ovarian cancer (EOC) carcinogenesis and outcomes, but a detailed profile in patient-derived tumors is needed. Here, we investigated the expression of TLR4- and MyD88-associated markers in tumors from over 500 EOC patients using immunohistochemical staining. We demonstrate that high expression of TLR4 and MyD88 predicts poorer overall survival in patients with EOC; most likely, this is due to their association with serous histology and features of high tumor burden and aggressiveness, including stage, grade, and ascites at surgery. Combined TLR4 and MyD88 expression appears to serve as an independent risk factor for shortened survival time, even after covariate adjustment (both moderate HR 1.1 [95 % CI 0.7-1.8], both strong HR 2.1 [95 % CI 1.1-3.8], both weak as referent; p = 0.027). We reveal that in EOC tissues with elevated expression of both TLR4 and MyD88 and activated NF-κB signaling pathway, expression of hsp60, hsp70, beta 2 defensin, and HMGB1 are also enriched. In total, these results suggest that activation of TLR4/MyD88/NF-κB signaling by endogenous ligands may contribute to an inflammatory microenvironment that drives a more aggressive phenotype with poorer clinical outcome in EOC patients.


Asunto(s)
Inflamación/complicaciones , Inflamación/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Neoplasias Glandulares y Epiteliales/etiología , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/etiología , Neoplasias Ováricas/metabolismo , Receptor Toll-Like 4/metabolismo , Microambiente Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Carcinoma Epitelial de Ovario , Transformación Celular Neoplásica , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Inflamación/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Clasificación del Tumor , Estadificación de Neoplasias , Neoplasias Glandulares y Epiteliales/mortalidad , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Pronóstico , Transducción de Señal , Receptor Toll-Like 4/genética , Microambiente Tumoral/genética , Adulto Joven
6.
Cancer Res Commun ; 4(2): 303-311, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38276870

RESUMEN

Advances in genetic technology have led to the increasing use of genomic panels in precision oncology practice, with panels ranging from a couple to hundreds of genes. However, the clinical utilization and utility of oncology genomic panels, especially among vulnerable populations, is unclear. We examined the association of panel size with socioeconomic status and clinical trial matching. We retrospectively identified 9,886 eligible adult subjects in the Mayo Clinic Health System who underwent genomic testing between January 1, 2016 and June 30, 2020. Patient data were retrieved from structured and unstructured data sources of institutional collections, including cancer registries, clinical data warehouses, and clinical notes. Socioeconomic surrogates were approximated using the Area Deprivation Index (ADI) corresponding to primary residence addresses. Logistic regression was performed to analyze relationships between ADI or rural/urban status and (i) use of genomic test by panel size; (ii) clinical trial matching status. Compared with patients from the most affluent areas, patients had a lower odds of receiving a panel test (vs. a single-gene test) if from areas of higher socioeconomic deprivation [OR (95% confidence interval (CI): 0.71 (0.61-0.83), P < 0.01] or a rural area [OR (95% CI): 0.85 (0.76-0.96), P < 0.01]. Patients in areas of higher socioeconomic deprivation were less likely to be matched to clinical trials if receiving medium panel tests [(OR) (95% CI): 0.69 (0.49-0.97), P = 0.03]; however, there was no difference among patients receiving large panel tests (P > 0.05) and rural patients were almost 2x greater odds of being matched if receiving a large panel test [(OR) (95% CI): 1.76 (1.21-2.55), P < 0.01]. SIGNIFICANCE: We identified socioeconomic and rurality disparities in the use of genomic tests and trial matching by panel size, which may have implications for equal access to targeted therapies. The lack of association between large panel tests and clinical trial matching by socioeconomic status, suggests a potential health equity impact, while removing barriers in access to large panels for rural patients may improve access to trials. However, further research is needed.


Asunto(s)
Neoplasias , Adulto , Humanos , Neoplasias/diagnóstico , Disparidades Socioeconómicas en Salud , Estudios Retrospectivos , Factores Socioeconómicos , Medicina de Precisión , Secuenciación de Nucleótidos de Alto Rendimiento
7.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005475

RESUMEN

Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.

8.
JHEP Rep ; 6(6): 101068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882601

RESUMEN

Background & Aims: Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA. Methods: Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case-control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels. Results: Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA. Conclusions: The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis. Impact and implications: Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary cancer with limited treatment response, highlighting the need for a better understanding of the disease biology. Using a global metabolomics and lipidomics platform, we characterized distinct changes in the serum of 213 patients with CCA compared with healthy controls. The results of this study elucidate novel metabolic pathways in CCA. These findings benefit stakeholders in both the clinical and research realms by providing a foundation for improved disease diagnostics and identifying novel targets for therapeutic design.

9.
Circ Genom Precis Med ; 16(1): e003761, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580305

RESUMEN

BACKGROUND: Deciphering hypoplastic left heart syndrome (HLHS) pathogenesis is confounded by its genetic heterogeneity and oligogenic underpinnings. METHODS: Whole genome sequences were analyzed by 3 independent strategies to identify HLHS gene candidates, ranked by variant, gene, and disease-level metrics. RESULTS: First, a genome-wide association study of 174 cases and 853 controls revealed suggestive association with a MYO18B intron 33 variant (rs2269628-G; frequency=0.55 versus 0.39; OR, 1.97 [95% CI, 1.54-2.52]; P=6.70×10-8). Second, transmission disequilibrium testing of 161 HLHS proband-parent trios revealed overrepresentation of a MYO18B intron 42 variant (rs73154186-A; frequency=0.05; OR, 24 [95% CI, 3.2-177.4]; P=4.23×10-6). Third, rare, predicted-damaging variants were filtered in 2 multiplex families. In 141H, 2 fifth-degree relatives with HLHS shared a paternally-inherited MYO5A missense variant (p.Arg801Trp; frequency=0.00003; combined annotation-dependent depletion score=29), each with a maternally-inherited or de novo candidate modifier variant in a MYO5A-interacting conventional myosin. In 442H, a HLHS proband was compound heterozygous for MYO15A variants-a maternally-inherited pathogenic stop-gain variant co-segregating with tetralogy of Fallot and bicuspid aortic valve in maternal relatives (p.Tyr2819Ter; frequency=0.00003) and a paternally-inherited intronic variant altering a canonical transcription factor binding site (rs1277068603; frequency=0.00001; position weight matrix score=0.98). CONCLUSIONS: Collectively, these findings suggest that common and rare alleles within unconventional myosin genes are associated with HLHS susceptibility. The identified candidate MYO18B regulates cardiac sarcomerogenesis, supporting the hypothesis of intrinsic myogenic perturbation in arrested left heart development.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Síndrome del Corazón Izquierdo Hipoplásico , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Estudio de Asociación del Genoma Completo , Mutación , Patrón de Herencia
10.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37754822

RESUMEN

Rare familial spontaneous coronary artery dissection (SCAD) kindreds implicate genetic disease predisposition and provide a unique opportunity for candidate gene discovery. Whole-genome sequencing was performed in fifteen probands with non-syndromic SCAD who had a relative with SCAD, eight of whom had a second relative with extra-coronary arteriopathy. Co-segregating variants and associated genes were prioritized by quantitative variant, gene, and disease-level metrics. Curated public databases were queried for functional relationships among encoded proteins. Fifty-four heterozygous coding variants in thirteen families co-segregated with disease and fulfilled primary filters of rarity, gene variation constraint, and predicted-deleterious protein effect. Secondary filters yielded 11 prioritized candidate genes in 12 families, with high arterial tissue expression (n = 7), high-confidence protein-level interactions with genes associated with SCAD previously (n = 10), and/or previous associations with connective tissue disorders and aortopathies (n = 3) or other vascular phenotypes in mice or humans (n = 11). High-confidence associations were identified among 10 familial SCAD candidate-gene-encoded proteins. A collagen-encoding gene was identified in five families, two with distinct variants in COL4A2. Familial SCAD is genetically heterogeneous, yet perturbations of extracellular matrix, cytoskeletal, and cell-cell adhesion proteins implicate common disease-susceptibility pathways. Incomplete penetrance and variable expression suggest genetic or environmental modifiers.

11.
Elife ; 122023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37404133

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) with a likely oligogenic etiology, but our understanding of the genetic complexities and pathogenic mechanisms leading to HLHS is limited. We performed whole genome sequencing (WGS) on 183 HLHS patient-parent trios to identify candidate genes, which were functionally tested in the Drosophila heart model. Bioinformatic analysis of WGS data from an index family of a HLHS proband born to consanguineous parents prioritized 9 candidate genes with rare, predicted damaging homozygous variants. Of them, cardiac-specific knockdown (KD) of mitochondrial MICOS complex subunit dCHCHD3/6 resulted in drastically compromised heart contractility, diminished levels of sarcomeric actin and myosin, reduced cardiac ATP levels, and mitochondrial fission-fusion defects. These defects were similar to those inflicted by cardiac KD of ATP synthase subunits of the electron transport chain (ETC), consistent with the MICOS complex's role in maintaining cristae morphology and ETC assembly. Five additional HLHS probands harbored rare, predicted damaging variants in CHCHD3 or CHCHD6. Hypothesizing an oligogenic basis for HLHS, we tested 60 additional prioritized candidate genes from these patients for genetic interactions with CHCHD3/6 in sensitized fly hearts. Moderate KD of CHCHD3/6 in combination with Cdk12 (activator of RNA polymerase II), RNF149 (goliath, E3 ubiquitin ligase), or SPTBN1 (ß-Spectrin, scaffolding protein) caused synergistic heart defects, suggesting the likely involvement of diverse pathways in HLHS. Further elucidation of novel candidate genes and genetic interactions of potentially disease-contributing pathways is expected to lead to a better understanding of HLHS and other CHDs.


Asunto(s)
Cardiopatías Congénitas , Síndrome del Corazón Izquierdo Hipoplásico , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Actomiosina , Biología Computacional , Adenosina Trifosfato , Proteínas Mitocondriales
12.
Circ Genom Precis Med ; 15(2): e003523, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35133174

RESUMEN

BACKGROUND: Whole-genome sequencing in families enables deciphering of congenital heart disease causes. A shared genetic basis for familial bicuspid aortic valve (BAV) and hypoplastic left heart syndrome (HLHS) was postulated. METHODS: Whole-genome sequencing was performed in affected members of 6 multiplex BAV families, an HLHS cohort of 197 probands and 546 relatives, and 813 controls. Data were filtered for rare, predicted-damaging variants that cosegregated with familial BAV and disrupted genes associated with congenital heart disease in humans and mice. Candidate genes were further prioritized by rare variant burden testing in HLHS cases versus controls. Modifier variants in HLHS proband-parent trios were sought to account for the severe developmental phenotype. RESULTS: In 5 BAV families, missense variants in 6 ontologically diverse genes for structural (SPTBN1, PAXIP1, and FBLN1) and signaling (CELSR1, PLXND1, and NOS3) proteins fulfilled filtering metrics. CELSR1, encoding cadherin epidermal growth factor laminin G seven-pass G-type receptor, was identified as a candidate gene in 2 families and was the only gene demonstrating rare variant enrichment in HLHS probands (P=0.003575). HLHS-associated CELSR1 variants included 16 missense, one splice site, and 3 noncoding variants predicted to disrupt canonical transcription factor binding sites, most of which were inherited from a parent without congenital heart disease. Filtering whole-genome sequencing data for rare, predicted-damaging variants inherited from the other parent revealed 2 cases of CELSR1 compound heterozygosity, one case of CELSR1-CELSR3 synergistic heterozygosity, and 4 cases of CELSR1-MYO15A digenic heterozygosity. CONCLUSIONS: CELSR1 is a susceptibility gene for familial BAV and HLHS, further implicating planar cell polarity pathway perturbation in congenital heart disease.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cadherinas , Cardiopatías Congénitas , Síndrome del Corazón Izquierdo Hipoplásico , Receptores Acoplados a Proteínas G , Alelos , Animales , Válvula Aórtica/anomalías , Enfermedad de la Válvula Aórtica Bicúspide/genética , Cadherinas/genética , Cardiopatías Congénitas/genética , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Glicoproteínas de Membrana/genética , Ratones , Receptores Acoplados a Proteínas G/genética
13.
Front Immunol ; 13: 1024039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36544759

RESUMEN

Introduction: Immune cell infiltration into the tumor microenvironment is generally associated with favorable clinical outcomes in solid tumors. However, the dynamic interplay among distinct immune cell subsets within the tumor-immune microenvironment as it relates to clinical responses to immunotherapy remains unresolved. In this study, we applied multiplex immunofluorescence (MxIF) to spatially characterize tumor-immune interactions within the metastatic melanoma lymph node. Methods: Pretreatment, whole lymph node biopsies were evaluated from 25 patients with regionally metastatic melanoma who underwent subsequent anti-PD1 therapy. Cyclic MxIF was applied to quantitatively and spatially assess expression of 45 pathologist-validated antibodies on a single tissue section. Pixel-based single cell segmentation and a supervised classifier approach resolved 10 distinct tumor, stromal and immune cell phenotypes and functional expression of PD1. Results: Single cell analysis across 416 pathologist-annotated tumor core regions of interest yielded 5.5 million cells for spatial evaluation. Cellular composition of tumor and immune cell subsets did not differ in the tumor core with regards to recurrence outcomes (p>0.05) however spatial patterns significantly differed in regional and paracrine neighborhood evaluations. Specifically, a regional community cluster comprised of primarily tumor and dendritic cells was enriched in patients that did not experience recurrence (p=0.009). By an independent spatial approach, cell-centric neighborhood analyses identified an enrichment for dendritic cells in cytotoxic T cell (CTL) and tumor cell-centric neighborhoods in the no recurrence patient response group (p<0.0001). Further evaluation of these neighborhoods identified an enrichment for CTL-dendritic cell interactions in patients that did not experience recurrence (p<0.0001) whereas CTL-macrophage interactions were more prevalent in CTL-centric neighborhoods of patients who experienced recurrence (p<0.0001). Discussion: Overall, this study offers a more comprehensive evaluation of immune infiltrates and spatial-immune signatures in the metastatic tumor-immune microenvironment as it informs recurrence risk following immunotherapy.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Melanoma/tratamiento farmacológico , Linfocitos T Citotóxicos , Inmunoterapia , Ganglios Linfáticos/patología , Microambiente Tumoral
14.
Front Genet ; 13: 836841, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432445

RESUMEN

Large genome-wide association studies have identified hundreds of single-nucleotide polymorphisms associated with increased risk of prostate cancer (PrCa), and many of these risk loci is presumed to confer regulatory effects on gene expression. While eQTL studies of long RNAs has yielded many potential risk genes, the relationship between PrCa risk genetics and microRNA expression dysregulation is understudied. We performed an microRNA transcriptome-wide association study of PrCa risk using small RNA sequencing and genome-wide genotyping data from N = 441 normal prostate epithelium tissue samples along with N = 411 prostate adenocarcinoma tumor samples from the Cancer Genome Atlas (TCGA). Genetically regulated expression prediction models were trained for all expressed microRNAs using the FUSION TWAS software. TWAS for PrCa risk was performed with both sets of models using single-SNP summary statistics from the recent PRACTICAL consortium PrCa case-control OncoArray GWAS meta-analysis. A total of 613 and 571 distinct expressed microRNAs were identified in the normal and tumor tissue datasets, respectively (overlap: 480). Among these, 79 (13%) normal tissue microRNAs demonstrated significant cis-heritability (median cis-h2 = 0.15, range: 0.03-0.79) for model training. Similar results were obtained from TCGA tumor samples, with 48 (9%) microRNA expression models successfully trained (median cis-h2 = 0.14, range: 0.06-0.60). Using normal tissue models, we identified two significant TWAS microRNA associations with PrCa risk: over-expression of mir-941 family microRNAs (PTWAS = 2.9E-04) and reduced expression of miR-3617-5p (PTWAS = 1.0E-03). The TCGA tumor TWAS also identified a significant association with miR-941 overexpression (PTWAS = 9.7E-04). Subsequent finemapping of the TWAS results using a multi-tissue database indicated limited evidence of causal status for each microRNA with PrCa risk (posterior inclusion probabilities <0.05). Future work will examine downstream regulatory effects of microRNA dysregulation as well as microRNA-mediated risk mechanisms via competing endogenous RNA relationships.

15.
Hepatol Commun ; 6(5): 1172-1185, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34783177

RESUMEN

Prostate-specific membrane antigen (PSMA) is a validated target for molecular diagnostics and targeted radionuclide therapy. Our purpose was to evaluate PSMA expression in hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and hepatic adenoma (HCA); investigate the genetic pathways in HCC associated with PSMA expression; and evaluate HCC detection rate with 68 Ga-PSMA-11 positron emission tomography (PET). In phase 1, PSMA immunohistochemistry (IHC) on HCC (n = 148), CCA (n = 111), and HCA (n = 78) was scored. In a subset (n = 30), messenger RNA (mRNA) data from the Cancer Genome Atlas HCC RNA sequencing were correlated with PSMA expression. In phase 2, 68 Ga-PSMA-11 PET was prospectively performed in patients with treatment-naïve HCC on a digital PET scanner using cyclotron-produced 68 Ga. Uptake was graded qualitatively and semi-quantitatively using standard metrics. On IHC, PSMA expression was significantly higher in HCC compared with CCA and HCA (P < 0.0001); 91% of HCCs (n = 134) expressed PSMA, which principally localized to tumor-associated neovasculature. Higher tumor grade was associated with PSMA expression (P = 0.012) but there was no association with tumor size (P = 0.14), fibrosis (P = 0.35), cirrhosis (P = 0.74), hepatitis B virus (P = 0.31), or hepatitis C virus (P = 0.15). Overall survival tended to be longer in patients without versus with PSMA expression (median overall survival: 4.2 vs. 1.9 years; P = 0.273). FGF14 (fibroblast growth factor 14) mRNA expression correlated positively (rho = 0.70; P = 1.70 × 10-5 ) and MAD1L1 (Mitotic spindle assembly checkpoint protein MAD1) correlated negatively with PSMA expression (rho = -0.753; P = 1.58 × 10-6 ). Of the 190 patients who met the eligibility criteria, 31 patients with 39 HCC lesions completed PET; 64% (n = 25) lesions had pronounced 68 Ga-PSMA-11 standardized uptake value: SUVmax (median [range] 9.2 [4.9-28.4]), SUVmean 4.7 (2.4-12.7), and tumor-to-liver background ratio 2 (1.1-11). Conclusion: Ex vivo expression of PSMA in neovasculature of HCC translates to marked tumor avidity on 68 Ga-PSMA-11 PET, which suggests that PSMA has the potential as a theranostic target in patients with HCC.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de la Próstata , Conductos Biliares Intrahepáticos/metabolismo , Carcinoma Hepatocelular/diagnóstico por imagen , Ciclotrones , Radioisótopos de Galio , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/diagnóstico por imagen , Masculino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/metabolismo , ARN Mensajero , Nanomedicina Teranóstica
16.
BMC Med Genomics ; 14(1): 165, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158040

RESUMEN

BACKGROUND: DNA polymerase epsilon (POLE) is encoded by the POLE gene, and POLE-driven tumors are characterized by high mutational rates. POLE-driven tumors are relatively common in endometrial and colorectal cancer, and their presence is increasingly recognized in ovarian cancer (OC) of endometrioid type. POLE-driven cases possess an abundance of TCT > TAT and TCG > TTG somatic mutations characterized by mutational signature 10 from the Catalog of Somatic Mutations in Cancer (COSMIC). By quantifying the contribution of COSMIC mutational signature 10 in RNA sequencing (RNA-seq) we set out to identify POLE-driven tumors in a set of unselected Mayo Clinic OC. METHODS: Mutational profiles were calculated using expressed single-nucleotide variants (eSNV) in the Mayo Clinic OC tumors (n = 195), The Cancer Genome Atlas (TCGA) OC tumors (n = 419), and the Genotype-Tissue Expression (GTEx) normal ovarian tissues (n = 84). Non-negative Matrix Factorization (NMF) of the mutational profiles inferred the contribution per sample of four distinct mutational signatures, one of which corresponds to COSMIC mutational signature 10. RESULTS: In the Mayo Clinic OC cohort we identified six tumors with a predicted contribution from COSMIC mutational signature 10 of over five mutations per megabase. These six cases harbored known POLE hotspot mutations (P286R, S297F, V411L, and A456P) and were of endometrioid histotype (P = 5e-04). These six tumors had an early onset (average age of patients at onset, 48.33 years) when compared to non-POLE endometrioid OC cohort (average age at onset, 60.13 years; P = .008). Samples from TCGA and GTEx had a low COSMIC signature 10 contribution (median 0.16 mutations per megabase; maximum 1.78 mutations per megabase) and carried no POLE hotspot mutations. CONCLUSIONS: From the largest cohort of RNA-seq from endometrioid OC to date (n = 53), we identified six hypermutated samples likely driven by POLE (frequency, 11%). Our result suggests the clinical need to screen for POLE driver mutations in endometrioid OC, which can guide enrollment in immunotherapy clinical trials.


Asunto(s)
Carcinoma Endometrioide
17.
Eur Urol ; 79(3): 353-361, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32800727

RESUMEN

BACKGROUND: Family history of prostate cancer (PCa) is a well-known risk factor, and both common and rare genetic variants are associated with the disease. OBJECTIVE: To detect new genetic variants associated with PCa, capitalizing on the role of family history and more aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS: A two-stage design was used. In stage one, whole-exome sequencing was used to identify potential risk alleles among affected men with a strong family history of disease or with more aggressive disease (491 cases and 429 controls). Aggressive disease was based on a sum of scores for Gleason score, node status, metastasis, tumor stage, prostate-specific antigen at diagnosis, systemic recurrence, and time to PCa death. Genes identified in stage one were screened in stage two using a custom-capture design in an independent set of 2917 cases and 1899 controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Frequencies of genetic variants (singly or jointly in a gene) were compared between cases and controls. RESULTS AND LIMITATIONS: Eleven genes previously reported to be associated with PCa were detected (ATM, BRCA2, HOXB13, FAM111A, EMSY, HNF1B, KLK3, MSMB, PCAT1, PRSS3, and TERT), as well as an additional 10 novel genes (PABPC1, QK1, FAM114A1, MUC6, MYCBP2, RAPGEF4, RNASEH2B, ULK4, XPO7, and THAP3). Of these 10 novel genes, all but PABPC1 and ULK4 were primarily associated with the risk of aggressive PCa. CONCLUSIONS: Our approach demonstrates the advantage of gene sequencing in the search for genetic variants associated with PCa and the benefits of sampling patients with a strong family history of disease or an aggressive form of disease. PATIENT SUMMARY: Multiple genes are associated with prostate cancer (PCa) among men with a strong family history of this disease or among men with an aggressive form of PCa.


Asunto(s)
Neoplasias de la Próstata , Genes BRCA2 , Factores de Intercambio de Guanina Nucleótido , Humanos , Masculino , Clasificación del Tumor , Neoplasias de la Próstata/genética , Proteínas Serina-Treonina Quinasas , Tripsina , Secuenciación del Exoma
18.
Elife ; 92020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33006316

RESUMEN

Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multidisciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole-genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in healthy human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps toward deciphering oligogenic underpinnings of CHDs, including hypoplastic left hearts.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Corazón/crecimiento & desarrollo , Humanos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Masculino , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
20.
PLoS One ; 14(4): e0214588, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30958860

RESUMEN

Prostate cancer (PrCa) is highly heritable; 284 variants have been identified to date that are associated with increased prostate cancer risk, yet few genes contributing to its development are known. Expression quantitative trait loci (eQTL) studies link variants with affected genes, helping to determine how these variants might regulate gene expression and may influence prostate cancer risk. In the current study, we performed eQTL analysis on 471 normal prostate epithelium samples and 249 PrCa-risk variants in 196 risk loci, utilizing RNA sequencing transcriptome data based on ENSEMBL gene definition and genome-wide variant data. We identified a total of 213 genes associated with known PrCa-risk variants, including 141 protein-coding genes, 16 lncRNAs, and 56 other non-coding RNA species with differential expression. Compared to our previous analysis, where RefSeq was used for gene annotation, we identified an additional 130 expressed genes associated with known PrCa-risk variants. We detected an eQTL signal for more than half (n = 102, 52%) of the 196 loci tested; 52 (51%) of which were a Group 1 signal, indicating high linkage disequilibrium (LD) between the peak eQTL variant and the PrCa-risk variant (r2>0.5) and may help explain how risk variants influence the development of prostate cancer.


Asunto(s)
Predisposición Genética a la Enfermedad , Desequilibrio de Ligamiento , Neoplasias de la Próstata/diagnóstico , Sitios de Carácter Cuantitativo , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Próstata/patología , Neoplasias de la Próstata/genética , Control de Calidad , Factores de Riesgo , Análisis de Secuencia de ARN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA