RESUMEN
BACKGROUND: While NTRK fusion-positive cancers can be exquisitely sensitive to first-generation TRK inhibitors, resistance inevitably occurs, mediated in many cases by acquired NTRK mutations. Next-generation inhibitors (e.g., selitrectinib, repotrectinib) maintain activity against these TRK mutant tumors; however, there are no next-generation TRK inhibitors approved by the FDA and select trials have stopped treating patients. Thus, the identification of novel, potent and specific next-generation TRK inhibitors is a high priority. METHODS: In silico modeling and in vitro kinase assays were performed on TRK wild type (WT) and TRK mutant kinases. Cell viability and clonogenic assays as well as western blots were performed on human primary and murine engineered NTRK fusion-positive TRK WT and mutant cell models. Finally, zurletrectinib was tested in vivo in human xenografts and murine orthotopic glioma models harboring TRK-resistant mutations. RESULTS: In vitro kinase and in cell-based assays showed that zurletrectinib, while displaying similar potency against TRKA, TRKB, and TRKC WT kinases, was more active than other FDA approved or clinically tested 1st- (larotrectinib) and next-generation (selitrectinib and repotrectinib) TRK inhibitors against most TRK inhibitor resistance mutations (13 out of 18). Similarly, zurletrectinib inhibited tumor growth in vivo in sub-cute xenograft models derived from NTRK fusion-positive cells at a dose 30 times lower when compared to selitrectinib. Computational modeling suggests this stronger activity to be the consequence of augmented binding affinity of zurletrectinib for TRK kinases. When compared to selitrectinib and repotrectinib, zurletrectinib showed increased brain penetration in rats 0.5 and 2 h following a single oral administration. Consistently, zurletrectinib significantly improved the survival of mice harboring orthotopic NTRK fusion-positive, TRK-mutant gliomas (median survival = 41.5, 66.5, and 104 days for selitrectinib, repotrectinib, and zurletrectinib respectively; P < 0.05). CONCLUSION: Our data identifies zurletrectinib as a novel, highly potent next-generation TRK inhibitor with stronger in vivo brain penetration and intracranial activity than other next-generation agents.
Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas , Receptor trkA , Receptor trkB , Receptor trkC , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Receptor trkA/genética , Receptor trkA/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptor trkB/antagonistas & inhibidores , Receptor trkB/genética , Receptor trkC/genética , Receptor trkC/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Ratas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Pirazoles/farmacología , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Pirimidinas/farmacología , Mutación , Femenino , Glicoproteínas de MembranaRESUMEN
BACKGROUND & AIMS: Notch signaling maintains intestinal stem cells (ISCs). When ISCs exit the niche, Notch signaling among early progenitor cells at position +4/5 regulates their specification toward secretory vs enterocyte lineages (binary fate). The transcription factor ATOH1 is repressed by Notch in ISCs; its de-repression, when Notch is inactivated, drives progenitor cells to differentiate along the secretory lineage. However, it is not clear what promotes transition of ISCs to progenitors and how this fate decision is established. METHODS: We sorted cells from Lgr5-GFP knockin intestines from mice and characterized gene expression patterns. We analyzed Notch regulation by examining expression profiles (by quantitative reverse transcription polymerase chain reaction and RNAscope) of small intestinal organoids incubated with the Notch inhibitor DAPT, intestine tissues from mice given injections of the γ-secretase inhibitor dibenzazepine, and mice with intestine-specific disruption of Rbpj. We analyzed intestine tissues from mice with disruption of the RUNX1 translocation partner 1 gene (Runx1t1, also called Mtg8) or CBFA2/RUNX1 partner transcriptional co-repressor 3 (Cbfa2t3, also called Mtg16), and derived their organoids, by histology, immunohistochemistry, and RNA sequencing (RNA-seq). We performed chromatin immunoprecipitation and sequencing analyses of intestinal crypts to identify genes regulated by MTG16. RESULTS: The transcription co-repressors MTG8 and MTG16 were highly expressed by +4/5 early progenitors, compared with other cells along crypt-villus axis. Expression of MTG8 and MTG16 were repressed by Notch signaling via ATOH1 in organoids and intestine tissues from mice. MTG8- and MTG16-knockout intestines had increased crypt hyperproliferation and expansion of ISCs, but enterocyte differentiation was impaired, based on loss of enterocyte markers and functions. Chromatin immunoprecipitation and sequencing analyses showed that MTG16 bound to promoters of genes that are specifically expressed by stem cells (such as Lgr5 and Ascl2) and repressed their transcription. MTG16 also bound to previously reported enhancer regions of genes regulated by ATOH1, including genes that encode Delta-like canonical Notch ligand and other secretory-specific transcription factors. CONCLUSIONS: In intestine tissues of mice and human intestinal organoids, MTG8 and MTG16 repress transcription in the earliest progenitor cells to promote exit of ISCs from their niche (niche exit) and control the binary fate decision (secretory vs enterocyte lineage) by repressing genes regulated by ATOH1.
Asunto(s)
Proteínas Co-Represoras/fisiología , Proteínas de Unión al ADN/fisiología , Enterocitos/citología , Enterocitos/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Represoras/fisiología , Células Madre/citología , Factores de Transcripción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Ratones , Nicho de Células Madre , Células Madre/metabolismoRESUMEN
Since their discovery in 2002, BRAF mutations have been identified as clear drivers of oncogenesis in several cancer types. Currently, their incidence rate is nearly 7% of all solid tumors with BRAF V600E constituting approximately 90% of these diagnoses. In melanoma, thyroid cancer, and histiocytic neoplasms, BRAF hotspot mutations are found at a rate of about 50%, while in lung and colorectal cancers they range from 3% to 10% of reported cases. Though present in other malignancies such as breast and ovarian cancers, they constitute a small portion of diagnoses (<1%). Given their frequency along with advancements in screening technologies, various methods are used for the detection of BRAF-mutant cancers. Among these are targeted next-generation sequencing (NGS) on tumor tissue or circulating tumor DNA (ctDNA) and immunohistochemistry (IHC)-based assays. With advancements in detection technologies, several approaches to the treatment of BRAF-mutant cancers have been taken. In this review, we retrace the milestones that led to the clinical development of targeted therapies currently available for these tumors.
RESUMEN
Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
RESUMEN
Cancer is a complex disease arising from a homeostatic imbalance of cell-intrinsic and microenvironment-related mechanisms. A multimodal approach to treat cancer that includes surgery, chemotherapy, and radiation therapy often fails in achieving tumor remission and produces unbearable side effects including secondary malignancies. Novel strategies have been implemented in the past decades in order to replace conventional chemotherapeutics with targeted, less toxic drugs. Up to now, scientists have relied on results achieved in animal research before proceeding to clinical trials. However, the high failure rate of targeted drugs in early phase trials leaves no doubt about the inadequacy of those models. In compliance with the need of reducing, and possibly replacing, animal research, studies have been conducted in vitro with advanced cellular models that more and more mimic the tumor in vivo. We will here review those methods that allow for the 3D reconstitution of the tumor and its microenvironment and the implementation of the organ-on-a-chip technology to study minimal organ units in disease progression. We will make specific reference to the usability of these systems as predictive cancer models and report on recent applications in high-throughput screenings of innovative and targeted drug compounds.
RESUMEN
Evolution of nanomedicine is the re-design of synthetic and biological carriers to implement novel theranostic platforms. In recent years, bacteriophage research favors this process, which has opened up new roads in drug and gene delivery studies. By displaying antibodies, peptides, or proteins on the surface of different bacteriophages through the phage display technique, it is now possible to unravel specific molecular determinants of both cancer cells and tumor-associated microenvironmental molecules. Downstream applications are manifold, with peptides being employed most of the times to functionalize drug carriers and improve their therapeutic index. Bacteriophages themselves were proven, in this scenario, to be good carriers for imaging molecules and therapeutics as well. Moreover, manipulation of their genetic material to stably vehiculate suicide genes within cancer cells substantially changed perspectives in gene therapy. In this review, we provide examples of how amenable phages can be used as anticancer agents, especially because their systemic administration is possible. We also provide some insights into how their immunogenic profile can be modulated and exploited in immuno-oncology for vaccine production.
RESUMEN
Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia.
Asunto(s)
Membrana Celular/metabolismo , Polaridad Celular , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Células Epiteliales/citología , Células Epiteliales/enzimología , Quinasas p21 Activadas/metabolismo , Secuencia de Aminoácidos , Animales , Células CACO-2 , Proteínas de Drosophila/metabolismo , Humanos , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Interferencia de ARN , Quinasas p21 Activadas/químicaRESUMEN
The tumor suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancers (CRCs), resulting in constitutive Wnt activation. To understand the Wnt-activating mechanism of the APC mutation, we applied CRISPR/Cas9 technology to engineer various APC-truncated isogenic lines. We find that the ß-catenin inhibitory domain (CID) in APC represents the threshold for pathological levels of Wnt activation and tumor transformation. Mechanistically, CID-deleted APC truncation promotes ß-catenin deubiquitination through reverse binding of ß-TrCP and USP7 to the destruction complex. USP7 depletion in APC-mutated CRC inhibits Wnt activation by restoring ß-catenin ubiquitination, drives differentiation, and suppresses xenograft tumor growth. Finally, the Wnt-activating role of USP7 is specific to APC mutations; thus, it can be used as a tumor-specific therapeutic target for most CRCs.
Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Mutación/genética , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinación , beta Catenina/metabolismo , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Células HEK293 , Humanos , Ratones , Organoides/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/farmacología , Peptidasa Específica de Ubiquitina 7/química , Ubiquitinación/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/química , Proteínas con Repetición de beta-Transducina/metabolismoRESUMEN
Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss- and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. Cancer Res; 76(20); 6095-106. ©2016 AACR.
Asunto(s)
Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/fisiología , Rabdomiosarcoma/terapia , Animales , Diferenciación Celular , Línea Celular Tumoral , Femenino , Proteínas Fetales/genética , Proteínas Fetales/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteína MioD/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Regiones Promotoras Genéticas , Receptor ErbB-3/genética , Receptor ErbB-3/fisiología , Rabdomiosarcoma/etiología , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/fisiologíaRESUMEN
Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity.
Asunto(s)
Proliferación Celular , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Transcripción PAX7/metabolismo , Sarcoma/patología , Animales , Humanos , Ratones Transgénicos , Factor de Transcripción PAX7/genética , Sarcoma/genéticaRESUMEN
Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.
Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , MicroARNs/metabolismo , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Rabdomiosarcoma Alveolar/enzimología , Rabdomiosarcoma Embrionario/enzimología , Factores de Transcripción/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/genética , Ácido Dicloroacético/farmacología , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Humanos , MicroARNs/genética , Desarrollo de Músculos/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Mioblastos/enzimología , Mioblastos/patología , Fenotipo , Interferencia de ARN , Rabdomiosarcoma Alveolar/tratamiento farmacológico , Rabdomiosarcoma Alveolar/genética , Rabdomiosarcoma Alveolar/patología , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/patología , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética , Transcripción Genética , TransfecciónRESUMEN
We recently described the mitochondrial localization and import of the vitamin D receptor (VDR) in actively proliferating HaCaT cells for the first time, but its role in the organelle remains unknown. Many metabolic intermediates that support cell growth are provided by the mitochondria; consequently, the identification of proteins that regulate mitochondrial metabolic pathways is of great interest, and we sought to understand whether VDR may modulate these pathways. We genetically silenced VDR in HaCaT cells and studied the effects on cell growth, mitochondrial metabolism and biosynthetic pathways. VDR knockdown resulted in robust growth inhibition, with accumulation in the G0G1 phase of the cell cycle and decreased accumulation in the M phase. The effects of VDR silencing on proliferation were confirmed in several human cancer cell lines. Decreased VDR expression was consistently observed in two different models of cell differentiation. The impairment of silenced HaCaT cell growth was accompanied by sharp increases in the mitochondrial membrane potential, which sensitized the cells to oxidative stress. We found that transcription of the subunits II and IV of cytochrome c oxidase was significantly increased upon VDR silencing. Accordingly, treatment of HaCaT cells with vitamin D downregulated both subunits, suggesting that VDR may inhibit the respiratory chain and redirect TCA intermediates toward biosynthesis, thus contributing to the metabolic switch that is typical of cancer cells. In order to explore this hypothesis, we examined various acetyl-CoA-dependent biosynthetic pathways, such as the mevalonate pathway (measured as cholesterol biosynthesis and prenylation of small GTPases), and histone acetylation levels; all of these pathways were inhibited by VDR silencing. These data provide evidence of the role of VDR as a gatekeeper of mitochondrial respiratory chain activity and a facilitator of the diversion of acetyl-CoA from the energy-producing TCA cycle toward biosynthetic pathways that are essential for cellular proliferation.
Asunto(s)
Proliferación Celular , Reprogramación Celular , Transporte de Electrón , Neoplasias/metabolismo , Receptores de Calcitriol/metabolismo , Línea Celular Tumoral , Puntos de Control de la Fase G1 del Ciclo Celular , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Redes y Vías Metabólicas , Mitocondrias/metabolismo , Receptores de Calcitriol/genéticaRESUMEN
Gastric cancer is a heterogeneous disease with diverse molecular and histological subtypes. We performed whole-genome sequencing in 100 tumor-normal pairs, along with DNA copy number, gene expression and methylation profiling, for integrative genomic analysis. We found subtype-specific genetic and epigenetic perturbations and unique mutational signatures. We identified previously known (TP53, ARID1A and CDH1) and new (MUC6, CTNNA2, GLI3, RNF43 and others) significantly mutated driver genes. Specifically, we found RHOA mutations in 14.3% of diffuse-type tumors but not in intestinal-type tumors (P < 0.001). The mutations clustered in recurrent hotspots affecting functional domains and caused defective RHOA signaling, promoting escape from anoikis in organoid cultures. The top perturbed pathways in gastric cancer included adherens junction and focal adhesion, in which RHOA and other mutated genes we identified participate as key players. These findings illustrate a multidimensional and comprehensive genomic landscape that highlights the molecular complexity of gastric cancer and provides a road map to facilitate genome-guided personalized therapy.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias Gástricas/genética , Uniones Adherentes , Algoritmos , Animales , Metilación de ADN , Análisis Mutacional de ADN , Epigénesis Genética , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Variación Genética , Genoma Humano , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína de Unión al GTP rhoA/genéticaRESUMEN
BACKGROUND: Vitamin D receptor (VDR) is a well known transcriptional regulator, active as heterodimer in association with coactivators and corepressors. In addition it has been described the extranuclear distribution of the receptor and in particular the recently reported mitochondrial localization in platelets and megakaryocytes is intriguing because it appears to be a common feature of steroid receptors. Whereas for other members of the steroid receptor family the mitochondrial function has been explored, up to now nothing is known about a mitochondrial form of VDR in human proliferating cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study we characterized for the first time the mitochondrial localization of VDR in the human keratinocyte cell line HaCaT. In proliferating HaCaT cells VDR was abundantly expressed in mitochondria in association with its binding partner RXRα and the import was ligand-independent. By immunoprecipitation studies we demonstrated the interaction of VDR with proteins of the permeability transition pore (PTP), VDAC and StAR. We then adopted different pharmacological and silencing approaches with the aim of hampering PTP function, either affecting PTP opening or abating the expression of the complex member StAR. By all means the impairment of pore function led to a reduction of mitochondrial levels of VDR. CONCLUSIONS: The results reported here demonstrate a ligand-independent mitochondrial import of VDR through the permeability transition pore, and open interesting new perspectives on PTP function as transporter and on VDR role in mitochondria.
Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Transporte de Proteínas , Receptores de Calcitriol/metabolismo , Línea Celular , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Ligandos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Poro de Transición de la Permeabilidad Mitocondrial , Receptores de Calcitriol/fisiología , Receptores X Retinoide/metabolismoRESUMEN
Many microRNAs (miRNAs), posttranscriptional regulators of numerous cellular processes and developmental events, are downregulated in tumors. However, their role in tumorigenesis remains largely unknown. In this work, we examined the role of the muscle-specific miRNAs miR-1 and miR-206 in human rhabdomyosarcoma (RMS), a soft tissue sarcoma thought to arise from skeletal muscle progenitors. We have shown that miR-1 was barely detectable in primary RMS of both the embryonal and alveolar subtypes and that both miR-1 and miR-206 failed to be induced in RMS cell lines upon serum deprivation. Moreover, reexpression of miR-206 in RMS cells promoted myogenic differentiation and blocked tumor growth in xenografted mice by switching the global mRNA expression profile to one that resembled mature muscle. Finally, we showed that the product of the MET proto-oncogene, the Met tyrosine-kinase receptor, which is overexpressed in RMS and has been implicated in RMS pathogenesis, was downregulated in murine satellite cells by miR-206 at the onset of normal myogenesis. Thus, failure of posttranscriptional modulation may underlie Met overexpression in RMS and other types of cancer. We propose that tissue-specific miRNAs such as miR-1 and miR-206, given their ability to modulate hundreds of transcripts and to act as nontoxic differentiating agents, may override the genomic heterogeneity of solid tumors and ultimately hold greater therapeutic potential than single gene-directed drugs.