Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0027624, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953654

RESUMEN

Tattooing and use of permanent makeup (PMU) have dramatically increased over the last decade, with a concomitant increase in ink-related infections. Studies have shown evidence that commercial tattoo and PMU inks are frequently contaminated with pathogenic microorganisms. Considering that tattoo inks are placed into the dermal layer of the skin where anaerobic bacteria can thrive and cause infections in low-oxygen environments, the prevalence of anaerobic and aerobic bacteria should be assessed in tattoo and PMU inks. In this study, we tested 75 tattoo and PMU inks using the analytical methods described in the FDA Bacteriological Analytical Manual Chapter 23 for the detection of both aerobic and anaerobic bacterial contamination, followed by 16S rRNA gene sequencing for microbial identification. Of 75 ink samples, we found 26 contaminated samples with 34 bacterial isolates taxonomically classified into 14 genera and 22 species. Among the 34 bacterial isolates, 19 were identified as possibly pathogenic bacterial strains. Two species, namely Cutibacterium acnes (four strains) and Staphylococcus epidermidis (two strains) were isolated under anaerobic conditions. Two possibly pathogenic bacterial strains, Staphylococcus saprophyticus and C. acnes, were isolated together from the same ink samples (n = 2), indicating that tattoo and PMU inks can contain both aerobic (S. saprophyticus) and anaerobic bacteria (C. acnes). No significant association was found between sterility claims on the ink label and the absence of bacterial contamination. The results indicate that tattoo and PMU inks can also contain anaerobic bacteria. IMPORTANCE: The rising popularity of tattooing and permanent makeup (PMU) has led to increased reports of ink-related infections. This study is the first to investigate the presence of both aerobic and anaerobic bacteria in commercial tattoo and PMU inks under aerobic and anaerobic conditions. Our findings reveal that unopened and sealed tattoo inks can harbor anaerobic bacteria, known to thrive in low-oxygen environments, such as the dermal layer of the skin, alongside aerobic bacteria. This suggests that contaminated tattoo inks could be a source of infection from both types of bacteria. The results emphasize the importance of monitoring these products for both aerobic and anaerobic bacteria, including possibly pathogenic microorganisms.

2.
J Ind Microbiol Biotechnol ; 49(4)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35595506

RESUMEN

Validating the efficacy of sporicidal agents is a critical step in current good manufacturing practices for disinfection requirements. A limitation is that the poor quality of spores can lead to false positive sporicidal results. The aim of this study was to explore optimal sporulation and purification methods in Bacillus spores. Spores of 7 Bacillus strains were produced in 5 different sporulation media. After density centrifugation, spore yields were measured by phase-contrast microscopy and enumeration assays. Effects of purification methods including heat, sonication and lysozyme, and maturation on spore qualities were determined by sodium hypochlorite sporicidal assay. Difco sporulation media was identified as the preferred sporulation medium for 4 out of 7 tested Bacillus strains. Sporulation rates in B. cereus, B. sphaericus, and B. thuringiensis were higher at 30°C than the rates at 37°C at a difference of 5%, 65%, and 20%, respectively. Bacillus licheniformis favored Mn2+-amended 10% Columbia Broth at 37°C for sporulation with 40-72% higher sporulation rates than other media. The maximum sporulation rates of B. cereus and B. thuringiensis were observed on double-strength Schaeffer's-glucose broth. All studied purification methods improved the spore purity with strain variations. However, intense heat (80°C for 20 min) and lysozyme (100 µg/mL) treatment impaired the spore quality of specific Bacillus strains by sensitizing them against sodium hypochlorite. The length of the maturation period had an impact on the spore resistance, and the most optimal maturation periods ranged from 7 to 21 days in Bacillus strains. The results of this study will pave the way for further evaluation of the sporicidal activity of disinfectants.


Asunto(s)
Bacillus , Desinfectantes , Desinfectantes/farmacología , Muramidasa , Hipoclorito de Sodio/farmacología , Esporas Bacterianas
3.
Foodborne Pathog Dis ; 19(8): 509-521, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35960531

RESUMEN

Salmonella serovar Kentucky is frequently isolated from chickens and dairy cattle, but recovery from humans is comparatively low based on the U.S. National Antimicrobial Resistance Monitoring System (NARMS) reports. We aimed to better describe the genetic diversity, antimicrobial resistance, and virulence determinants of Salmonella Kentucky isolates from humans, food animal ceca, retail meat and poultry products, imported foods and food products, and other samples. We analyzed the genomes of 774 Salmonella Kentucky isolates and found that 63% (54/86) of human isolates were sequence type (ST)198, 33% (29/86) were ST152, and 3.5% (3/86) were ST314. Ninety-one percent (570/629) of cecal isolates and retail meat and poultry isolates were ST152 or ST152-like (one allele difference), and 9.2% (58/629) were ST198. Isolates from imported food were mostly ST198 (60%, 22/37) and ST314 (29.7%, 11/37). ST198 isolates clustered into two main lineages. Clade ST198.2 comprised almost entirely isolates from humans and imported foods, all containing triple mutations in the quinolone resistance-determining region (QRDR) that confer resistance to fluoroquinolones. Clade ST198.1 contained isolates from humans, ceca, retail meat and poultry products, and imported foods that largely lacked QRDR mutations. ST152 isolates from cattle had a lineage (Clade 2) distinct from ST152 isolates from chicken (Clade 4), and half of ST152 human isolates clustered within two other clades (Clades 1 and 3), largely distinct from Clades 2 and 4. Although clinical illness associated with Salmonella Kentucky is low, ST198 appears to account for most human infections in the Unites States but is uncommon among ceca of domestic food animals and retail meat and poultry products. These findings, combined with human exposure data, suggest that fluoroquinolone-resistant ST198 infections may be linked to the consumption of food products that are imported or consumed while traveling. We also found unique differences in the composition of virulence genes and antimicrobial resistance genes among the clades, which may provide clues to the host specificity and pathogenicity of Salmonella Kentucky lineages.


Asunto(s)
Antibacterianos , Salmonella enterica , Animales , Antibacterianos/farmacología , Bovinos , Pollos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Humanos , Kentucky , Pruebas de Sensibilidad Microbiana , Salmonella/genética , Serogrupo , Estados Unidos , Virulencia/genética
4.
BMC Microbiol ; 20(1): 353, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203384

RESUMEN

In the past decade, the initial studies of the gut microbiota started focusing on the correlation of the composition of the gut microbiota and the health or diseases of the host, and there are extensive literature reviews pertaining to this theme. However, little is known about the association between the microbiota, the host, and pathogenic bacteria, such as Salmonella enterica, which is among the most important foodborne pathogens and identified as the source of multiple outbreaks linked to contaminated foods causing salmonellosis. Secretion systems, flagella, fimbriae, endotoxins, and exotoxins are factors that play the most important roles in the successful infection of the host cell by Salmonella. Infections with S. enterica, which is a threat to human health, can alter the genomic, taxonomic, and functional traits of the gut microbiota. The purpose of this review is to outline the state of knowledge on the impacts of S. enterica on the intestinal microbiota and highlight the need to identify the gut bacteria that could contribute to salmonellosis.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por Salmonella/microbiología , Salmonella enterica/fisiología , Animales , Gastroenteritis/microbiología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Transferencia de Gen Horizontal , Interacciones Huésped-Patógeno , Humanos , Interacciones Microbianas
5.
Pediatr Res ; 88(1): 57-65, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31261372

RESUMEN

BACKGROUND: There is currently a lack of experimental evidence for horizontal gene transfer (HGT) mechanisms in the human gut microbiota. The aim of this study was therefore to experimentally determine the HGT potential in the microbiota of a healthy preterm infant twin pair and to evaluate the global occurrence of the mobilized elements. METHODS: Stool samples were collected. Both shotgun metagenome sequencing and bacterial culturing were done for the same samples. A range of experimental conditions were used to test DNA transfer for the cultured isolates. Searches for global distribution of transferable elements were done for the ~120,000 metagenomic samples in the Sequence Read Archive (SRA) database. RESULTS: DNA transfer experiments demonstrated frequent transmission of an ESBL encoding IncI1 plasmid, a high copy number ColEI plasmid, and bacteriophage P1. Both IncI1 and ColE1 were abundant in the stool samples. In vitro competition experiments showed that transconjugants containing IncI1 plasmids outcompeted the recipient strain in the absence of antibiotic selection. The SRA searches indicated a global distribution of the mobilizable elements, with chicken identified as a possible reservoir for the IncI1 ESBL encoding plasmid. CONCLUSION: Our results experimentally support a major horizontal transmission and persistence potential of the preterm infant gut microbiota mobilome involving genes encoding ESBL.


Asunto(s)
Microbioma Gastrointestinal , Técnicas de Transferencia de Gen , Transferencia de Gen Horizontal , Familia de Multigenes , Animales , Antibacterianos , Bacteriófagos , Pollos , Mapeo Contig , Elementos Transponibles de ADN , ADN Bacteriano/análisis , Enterococcus/genética , Escherichia coli/genética , Humanos , Recién Nacido , Recien Nacido Prematuro , Plásmidos/genética , Prevalencia , Estudios Prospectivos , Análisis de Secuencia de ADN , Staphylococcus epidermidis/genética , Gemelos
6.
BMC Genomics ; 20(1): 490, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31195964

RESUMEN

BACKGROUND: Salmonella enterica possess several iron acquisition systems, encoded on the chromosome and plasmids. Recently, we demonstrated that incompatibility group (Inc) FIB plasmid-encoded iron acquisition systems (Sit and aerobactin) likely play an important role in persistence of Salmonella in human intestinal epithelial cells (Caco-2). In this study, we sought to determine global transcriptome analyses of S. enterica in iron-rich (IR) and iron-depleted (ID) growth conditions. RESULTS: The number of differentially-expressed genes were substantially higher for recipient (SE819) (n = 966) and transconjugant (TC) (n = 945) compared to the wild type (WT) (SE163A) (n = 110) strain in ID as compared to IR growth conditions. Several virulence-associated factors including T3SS, flagellin, cold-shock protein (cspE), and regulatory genes were upregulated in TC in ID compared to IR conditions. Whereas, IS1 and acrR/tetR transposases located on the IncFIB plasmid, ferritin and several regulatory genes were downregulated in TC in ID conditions. Enterobactin transporter (entS), iron ABC transporter (fepCD), colicin transporter, IncFIB-encoded enolase, cyclic di-GMP regulator (cdgR) and other regulatory genes of the WT strain were upregulated in ID compared to IR conditions. Conversely, ferritin, ferrous iron transport protein A (feoA), IncFIB-encoded IS1 and acrR/tetR transposases and ArtA toxin of WT were downregulated in ID conditions. SDS-PAGE coupled with LC-MS/MS analyses revealed that siderophore receptor proteins such as chromosomally-encoded IroN and, IncFIB-encoded IutA were upregulated in WT and TC in ID growth conditions. Both chromosome and IncFIB plasmid-encoded SitA was overexpressed in WT, but not in TC or recipient in ID conditions. Increased expression of flagellin was detected in recipient and TC, but not in WT in ID conditions. CONCLUSION: Iron concentrations in growth media influenced differential gene expressions both at transcriptional and translational levels, including genes encoded on the IncFIB plasmid. Limited iron availability within the host may promote pathogenic Salmonella to differentially express subsets of genes encoded by chromosome and/or plasmids, facilitating establishment of successful infection.


Asunto(s)
Medios de Cultivo/química , Perfilación de la Expresión Génica , Hierro/análisis , Hierro/farmacología , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/genética , Células CACO-2 , Humanos , Proteómica , Salmonella enterica/efectos de los fármacos
7.
Foodborne Pathog Dis ; 15(3): 168-176, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29265877

RESUMEN

Salmonella is a predominant foodborne pathogen in the United States and other countries. Mobile genetic elements such as plasmids allow Salmonella to adapt to external stress factors such as nutrient deprivation and host factors. Incompatibility group I1 (IncI1) plasmid-carrying Salmonella enterica strains were examined to determine the presence of plasmid-associated genes and their influence on phenotypic characteristics. The objective of this study was to understand the genetic determinants on IncI1 plasmids and their impact on antimicrobial susceptibility, competitive growth inhibition of Escherichia coli, and plasmid transfer. Primers were designed for genes that play a role in virulence, antimicrobial resistance, and plasmid transfer based on previously sequenced IncI1 plasmids. Polymerase chain reaction assays were conducted on 92 incompatibility group I1 (IncI1)-positive S. enterica strains. Phenotypic characterization included conjugation assays, antimicrobial susceptibility testing, and bacteriocin production based on the inhibition of growth of colicin-negative E. coli J53. The antimicrobial resistance genes aadA1, tetA, sul1, and blaCMY were detected in 88%, 87%, 80%, and 48% of the strains, respectively. Over half of the strains were resistant or intermediately resistant to streptomycin (85%), sulfonamides (76%), tetracycline (74%), and ampicillin (68%) and 57% of the strains inhibited growth of E. coli J53 strain. Among putative virulence genes, colicin-associated colI and cib were detected in 23% and 35% of strains and imm and ccdA were present in 58% and 54% of strains, respectively. Approximately 61% of strains contained plasmids that conjugally transferred antimicrobial resistance, including 83% where the recipient received IncI1 plasmids. Most of the strains carried an assortment of transfer associated (pil and tra) genes with between 63% and 99% of strains being positive for individual genes. Taken together the study affirms that IncI1 plasmids likely play roles in the dissemination of antimicrobial resistance and virulence-associated factors among enteric organisms.


Asunto(s)
Antiinfecciosos/farmacología , Farmacorresistencia Microbiana/genética , Escherichia coli/crecimiento & desarrollo , Plásmidos/genética , Salmonella enterica/genética , Virulencia , Animales , Transferencia de Gen Horizontal , Genotipo , Humanos , Fenotipo , Reacción en Cadena de la Polimerasa , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad
8.
BMC Genomics ; 18(1): 570, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28768482

RESUMEN

BACKGROUND: The degree to which the chromosomal mediated iron acquisition system contributes to virulence of many bacterial pathogens is well defined. However, the functional roles of plasmid encoded iron acquisition systems, specifically Sit and aerobactin, have yet to be determined for Salmonella spp. In a recent study, Salmonella enterica strains isolated from different food sources were sequenced on the Illumina MiSeq platform and found to harbor the incompatibility group (Inc) FIB plasmid. In this study, we examined sequence diversity and the contribution of factors encoded on the IncFIB plasmid to the virulence of S. enterica. RESULTS: Whole genome sequences of seven S. enterica isolates were compared to genomes of serovars of S. enterica isolated from food, animal, and human sources. SeqSero analysis predicted that six strains were serovar Typhimurium and one was Heidelberg. Among the S. Typhimurium strains, single nucleotide polymorphism (SNP)-based phylogenetic analyses revealed that five of the isolates clustered as a single monophyletic S. Typhimurium subclade, while one of the other strains branched with S. Typhimurium from a bovine source. DNA sequence based phylogenetic diversity analyses showed that the IncFIB plasmid-encoded Sit and aerobactin iron acquisition systems are conserved among bacterial species including S. enterica. The IncFIB plasmid was transferred to an IncFIB plasmid deficient strain of S. enterica by conjugation. The transconjugant SE819::IncFIB persisted in human intestinal epithelial (Caco-2) cells at a higher rate than the recipient SE819. Genes of the Sit and aerobactin operons in the IncFIB plasmid were differentially expressed in iron-rich and iron-depleted growth media. CONCLUSIONS: Minimal sequence diversity was detected in the Sit and aerobactin operons in the IncFIB plasmids present among different bacterial species, including foodborne Salmonella strains. IncFIB plasmid encoded factors play a role during infection under low-iron conditions in host cells.


Asunto(s)
Proteínas Bacterianas/genética , Microbiología de Alimentos , Genómica , Plásmidos/genética , Salmonella enterica/genética , Factores de Virulencia/genética , Células CACO-2 , Humanos , Hierro/metabolismo , Cinética , Filogenia , Salmonella enterica/aislamiento & purificación , Salmonella enterica/metabolismo , Salmonella enterica/fisiología
9.
Pediatr Res ; 82(5): 829-838, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28665922

RESUMEN

BackgroundThe preterm infant gut microbiota is vulnerable to different biotic and abiotic factors. Although the development of this microbiota has been extensively studied, the mobilome-i.e. the mobile genetic elements (MGEs) in the gut microbiota-has not been considered. Therefore, the aim of this study was to investigate the association of the mobilome with birth weight and hospital location in the preterm infant gut microbiota.MethodsThe data set consists of fecal samples from 62 preterm infants with and without necrotizing enterocolitis (NEC) from three different hospitals. We analyzed the gut microbiome by using 16S rRNA amplicon sequencing, shot-gun metagenome sequencing, and quantitative PCR. Predictive models and other data analyses were performed using MATLAB and QIIME.ResultSThe microbiota composition was significantly different between NEC-positive and NEC-negative infants and significantly different between hospitals. An operational taxanomic unit (OTU) showed strong positive and negative correlation with NEC and birth weight, respectively, whereas none showed significance for mode of delivery. Metagenome analyses revealed high levels of conjugative plasmids with MGEs and virulence genes. Results from quantitative PCR showed that the plasmid signature genes were significantly different between hospitals and in NEC-positive infants.ConclusionOur results point toward an association of the mobilome with hospital location in preterm infants.


Asunto(s)
Peso al Nacer , ADN Bacteriano/genética , Enterocolitis Necrotizante/microbiología , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Secuencias Repetitivas Esparcidas , Nacimiento Prematuro/microbiología , Estudios de Casos y Controles , Biología Computacional , Bases de Datos Genéticas , Enterocolitis Necrotizante/diagnóstico , Enterocolitis Necrotizante/epidemiología , Heces/microbiología , Femenino , Genoma Bacteriano , Edad Gestacional , Humanos , Recién Nacido , Masculino , Metagenoma , Metagenómica/métodos , Nacimiento Prematuro/diagnóstico , Nacimiento Prematuro/epidemiología , Ribotipificación , Estados Unidos/epidemiología
10.
Appl Environ Microbiol ; 82(20): 6273-6283, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27565615

RESUMEN

There are an estimated 8 million users of smokeless tobacco products (STPs) in the United States, and yet limited data on microbial populations within these products exist. To better understand the potential microbiological risks associated with STP use, a study was conducted to provide a baseline microbiological profile of STPs. A total of 90 samples, representing 15 common STPs, were purchased in metropolitan areas in Little Rock, AR, and Washington, DC, in November 2012, March 2013, and July 2013. Bacterial populations were evaluated using culture, pyrosequencing, and denaturing gradient gel electrophoresis (DGGE). Moist-snuff products exhibited higher levels of bacteria (average of 1.05 × 106 CFU/g STP) and diversity of bacterial populations than snus (average of 8.33 × 101 CFU/g STP) and some chewing tobacco products (average of 2.54 × 105 CFU/g STP). The most common species identified by culturing were Bacillus pumilus, B. licheniformis, B. safensis, and B. subtilis, followed by members of the genera Oceanobacillus, Staphylococcus, and Tetragenococcus. Pyrosequencing analyses of the 16S rRNA genes identified the genera Tetragenococcus, Carnobacterium, Lactobacillus, Geobacillus, Bacillus, and Staphylococcus as the predominant taxa. Several species identified are of possible concern due to their potential to cause opportunistic infections and reported abilities to reduce nitrates to nitrites, which may be an important step in the formation of carcinogenic tobacco-specific N'-nitrosamines. This report provides a microbiological baseline to help fill knowledge gaps associated with microbiological risks of STPs and to inform potential regulations regarding manufacture and testing of STPs. IMPORTANCE: It is estimated that there 8 million users of smokeless tobacco products (STPs) in the United States; however, there are limited data on microbial populations that exist within these products. The current study was undertaken to better understand the potential microbiological risks associated with STP use and provide a baseline microbiological profile of STPs. Several bacterial species were identified that are of possible concern due to their potential to cause opportunistic infections. In addition, some species have abilities to reduce nitrates to nitrites, which may be an important step in the formation of carcinogenic tobacco-specific N'-nitrosamines. Overall, this report provides a microbiological baseline to help fill knowledge gaps related to the microbiological risks of STPs and to inform potential regulations regarding the manufacture and testing of STPs.


Asunto(s)
Bacterias/aislamiento & purificación , Tabaco sin Humo/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Seguridad de Productos para el Consumidor , Nitratos/metabolismo , Nitritos/metabolismo , Estados Unidos
11.
Foodborne Pathog Dis ; 13(2): 80-7, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26653998

RESUMEN

This study evaluated antimicrobial resistance and virulence factors in Salmonella enterica isolated from a turkey flock in which the birds were raised in an environment where antimicrobials were not administered to the birds, either through feed or water. Salmonella was isolated from turkeys and various environmental samples in the facility using conventional microbiological procedures. Isolates were serotyped and analyzed phenotypically by antimicrobial resistance profiling and genotypically by pulsed-field gel electrophoresis (PFGE) fingerprinting, integron analysis, plasmid profiling, replicon-based incompatibility (Inc) group typing, and virulence gene profiling. Ninety-five S. enterica isolates were isolated from cecal contents (n = 29), feed (n = 22), leftover feed (n = 13), litter (n = 12), drinkers (n = 10), environment (n = 8), and an insect. The following serotypes were identified: Montevideo (24%), Anatum (22%), Agona (17%), Kentucky and Worthington (12%), Senftenberg (11%), and rough phenotypes (3%). The majority of isolates (61/95; 64%) were susceptible to 12 antimicrobials tested; however, despite the absence of antimicrobials in the facility, approximately 36% of the isolates were resistant to two to five antimicrobials. Class 1 integrons were detected in 8% of the isolates. The integron sequence analysis revealed dihydrofolate reductase (dhfr) and aminoglycoside adenylyl transferase (aadA2) genes, which encode trimethoprim and streptomycin resistance, respectively. Furthermore, 71% of the isolates had at least one plasmid. There were five plasmid replicon types identified among the isolates, including IncI1, IncHI2, IncFIIA, IncB/O, and IncP, with variable prevalence among the serotypes. All 95 isolates tested polymerase chain reaction-positive for 19 virulence genes and negative for virD4 and virB4. The virulence gene profiles were similar within the isolates from the same serotype. Within particular serotypes, PFGE patterns revealed 100% similarity, even when the bacterial strains were isolated from different sources, indicating cross-colonization of sources within the turkey facility. On this antibiotic-free turkey farm, turkeys and feed appeared to be the major reservoirs of multidrug-resistant Salmonella, which harbored multiple virulence genes.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Salmonella enterica/genética , Serogrupo , Pavos/microbiología , Animales , Antiinfecciosos/inmunología , Ciego/microbiología , ADN Bacteriano/aislamiento & purificación , Farmacorresistencia Bacteriana Múltiple/genética , Electroforesis en Gel de Campo Pulsado , Ambiente , Microbiología de Alimentos , Industria de Procesamiento de Alimentos , Genotipo , Integrones/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Replicón/genética , Salmonella enterica/aislamiento & purificación , Factores de Virulencia
12.
Anaerobe ; 38: 25-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26608548

RESUMEN

Clostridium perfringens is an important pathogen, causing food poisoning and other mild to severe infections in humans and animals. Some strains of C. perfringens contain conjugative plasmids, which may carry antimicrobial resistance and toxin genes. We studied genomic and plasmid diversity of 145 C. perfringens type A strains isolated from soils, foods, chickens, clinical samples, and domestic animals (porcine, bovine and canine), from different geographic areas in the United States between 1994 and 2006, using multiple-locus variable-number tandem repeat analysis (MLVA) and/or pulsed-field gel electrophoresis (PFGE). MLVA detected the genetic diversity in a majority of the isolates. PFGE, using SmaI and KspI, confirmed the MLVA results but also detected differences among the strains that could not be differentiated by MLVA. All of the PFGE profiles of the strains were different, except for a few of the epidemiologically related strains, which were identical. The PFGE profiles of strains isolated from the same domestic animal species were clustered more closely with each other than with other strains. However, a variety of C. perfringens strains with distinct genetic backgrounds were found among the clinical isolates. Variation was also observed in the size and number of plasmids in the strains. Primers for the internal fragment of a conjugative tcpH gene of C. perfringens plasmid pCPF4969 amplified identical size fragments from a majority of strains tested; and this gene hybridized to the various-sized plasmids of these strains. The sequences of the PCR-amplified tcpH genes from 12 strains showed diversity among the tcpH genes. Regardless of the sources of the isolates, the genetic diversity of C. perfringens extended to the plasmids carrying conjugative genes.


Asunto(s)
Infecciones por Clostridium/epidemiología , Infecciones por Clostridium/microbiología , Clostridium perfringens/genética , Conjugación Genética , Plásmidos/genética , Animales , Secuencia de Bases , Clostridium perfringens/clasificación , Clostridium perfringens/aislamiento & purificación , Análisis por Conglomerados , Electroforesis en Gel de Campo Pulsado , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos , Humanos , Tipificación de Secuencias Multilocus , Plásmidos/química , Prevalencia , Microbiología del Suelo
13.
Microbiol Spectr ; 12(1): e0338723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991378

RESUMEN

IMPORTANCE: In spite of the dissemination of multidrug-resistant plasmids among Gram-negative pathogens, including those carrying virulence genes, vector tools for studying plasmid-born genes are lacking. The allelic replacement vectors can be used to generate plasmid or chromosomal mutations including markless point mutations. This is the first report describing a self-excising integrative vector that can be used as a stable single-copy complementing tool to study medically important pathogens including in vivo studies without the need for antibiotic selection. Overall, our newly developed vectors can be applied for the assessment of the function of plasmid-encoded genes by specifically creating mutations, moving large operons between plasmids and to/from the chromosome, and complementing phenotypes associated with gene mutation. Furthermore, the vectors express chromophores for the detection of target gene modification or colony isolation, avoiding time-consuming screening procedures.


Asunto(s)
Antibacterianos , Vectores Genéticos , Plásmidos/genética , Mutación , Fenotipo
14.
Microbiol Resour Announc ; 13(6): e0021624, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38712933

RESUMEN

Vibrio metoecus was isolated from the abdominal cavity of moribund laboratory zebrafish. We report complete genomic sequences of V. metoecus strain ZF102 that has two circular chromosomes of 2,872,299 and 1,170,691 bp and two plasmids of 5,265 and 2,361 bp.

15.
Sci Rep ; 14(1): 9802, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684834

RESUMEN

Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, ß-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.


Asunto(s)
Plásmidos , Plásmidos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Genotipo , Enterobacter/genética , Salmonella/genética , Salmonella/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética
16.
Microbiol Resour Announc ; 13(2): e0106223, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38231183

RESUMEN

Seventeen Salmonella enterica serovar Schwarzengrund isolates from chicken (n = 9) and clinical samples including stool (n = 6), urine (n = 1), and gallbladder (n = 1) were sequenced and found to carry an IncFIB-IncFIC (FII) fusion plasmid of approximately 145 Kb. This information provides reference genomic data for comparative studies of S. Schwarzengrund pathogenicity and plasmid genetics.

17.
EcoSal Plus ; : eesp00012023, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38415623

RESUMEN

Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.

18.
Front Microbiol ; 15: 1397068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827152

RESUMEN

A total of 55 food and clinical S. Schwarzengrund isolates were assayed for plasmid content, among which an IncFIB-IncFIC(FII) fusion plasmid, conferring streptomycin resistance, was detected in 17 isolates. Among the 17 isolates, 9 were food isolates primarily collected from poultry meat, and 8 clinical isolates collected from stool, urine, and gallbladder. SNP-based phylogenetic analyses showed that the isolates carrying the fusion plasmid formed a subclade indicating the plasmid was acquired and is now maintained by the lineage. Phylogenetic analysis of the plasmid suggested it is derived from avian pathogenic plasmids and might confer an adaptive advantage to the S. Schwarzengrund isolates within birds. IncFIB-IncFIC(FII) fusion plasmids from all food and three clinical isolates were self-conjugative and successfully transferred into E. coli J53 by conjugation. Food and clinical isolates had similar virulome profiles and were able to invade human Caco-2 cells. However, the IncFIB-IncFIC(FII) plasmid did not significantly add to their invasion and persistence potential in human Caco-2 cells.

19.
BMC Bioinformatics ; 14 Suppl 14: S15, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24267777

RESUMEN

BACKGROUND: Pulsed field gel electrophoresis (PFGE) is currently the most widely and routinely used method by the Centers for Disease Control and Prevention (CDC) and state health labs in the United States for Salmonella surveillance and outbreak tracking. Major drawbacks of commercially available PFGE analysis programs have been their difficulty in dealing with large datasets and the limited availability of analysis tools. There exists a need to develop new analytical tools for PFGE data mining in order to make full use of valuable data in large surveillance databases. RESULTS: In this study, a software package was developed consisting of five types of bioinformatics approaches exploring and implementing for the analysis and visualization of PFGE fingerprinting. The approaches include PFGE band standardization, Salmonella serotype prediction, hierarchical cluster analysis, distance matrix analysis and two-way hierarchical cluster analysis. PFGE band standardization makes it possible for cross-group large dataset analysis. The Salmonella serotype prediction approach allows users to predict serotypes of Salmonella isolates based on their PFGE patterns. The hierarchical cluster analysis approach could be used to clarify subtypes and phylogenetic relationships among groups of PFGE patterns. The distance matrix and two-way hierarchical cluster analysis tools allow users to directly visualize the similarities/dissimilarities of any two individual patterns and the inter- and intra-serotype relationships of two or more serotypes, and provide a summary of the overall relationships between user-selected serotypes as well as the distinguishable band markers of these serotypes. The functionalities of these tools were illustrated on PFGE fingerprinting data from PulseNet of CDC. CONCLUSIONS: The bioinformatics approaches included in the software package developed in this study were integrated with the PFGE database to enhance the data mining of PFGE fingerprints. Fast and accurate prediction makes it possible to elucidate Salmonella serotype information before conventional serological methods are pursued. The development of bioinformatics tools to distinguish the PFGE markers and serotype specific patterns will enhance PFGE data retrieval, interpretation and serotype identification and will likely accelerate source tracking to identify the Salmonella isolates implicated in foodborne diseases.


Asunto(s)
Biología Computacional/métodos , Electroforesis en Gel de Campo Pulsado/métodos , Salmonella/clasificación , Análisis por Conglomerados , Minería de Datos , Bases de Datos Genéticas , Humanos , Salmonella/química , Salmonella/genética , Serotipificación
20.
J Antimicrob Chemother ; 68(5): 1019-24, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23302578

RESUMEN

OBJECTIVES: To determine the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants and investigate mutations in gyrase and topoisomerase genes that may contribute to increased fluoroquinolone resistance in canine and feline Escherichia coli isolates in the USA that displayed reduced susceptibility to extended-spectrum cephalosporins. This study was undertaken because previous epidemiological studies identified a potential correlation between extended-spectrum cephalosporins and fluoroquinolone resistance. METHODS: Isolates (n = 54) with reduced susceptibility to ceftazidime or cefotaxime were screened by PCR for the presence of PMQR determinants and gyrase and topoisomerase genes were sequenced. Isolates were further characterized by conjugation and phylogenetic analyses. RESULTS: PMQR determinants aac(6')-Ib-cr, qnrS and qepA were identified in 30, 23 and 5 isolates, respectively. Multiple mutations were identified in the quinolone resistance-determining region, including the novel substitutions of Glu-84 → Ala and Leu-88 → Gln in ParC and Arg-432 → Ser and Glu-460 → Val in ParE. The isolate that exhibited the highest level of enrofloxacin resistance (MIC > 256 mg/L) had a double mutation in gyrA (Ser-83 → Leu and Asp-87 → Asn) and a triple mutation in parC (Ser-80 → Ile, Glu-84 → Gly and a novel mutation, Leu-88 → Gln). The presence of PMQR genes increased the ciprofloxacin MIC values 4-fold to 8-fold in transconjugants relative to the recipient strain. Approximately 39% of the isolates belonged to phylogenetic group D and 30% to group B2, which typically contain an increased number of virulence determinants compared with other groups. CONCLUSIONS: Novel mutations in topoisomerase genes and PMQR determinants aac(6')-Ib-cr, qnrS and qepA genes were detected among extended-spectrum ß-lactamase-producing E. coli in the USA.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/veterinaria , Escherichia coli/efectos de los fármacos , Fluoroquinolonas/farmacología , Genes Bacterianos , Mascotas/microbiología , Animales , Gatos , Cefalosporinas/farmacología , Cromosomas Bacterianos , Conjugación Genética , ADN-Topoisomerasas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Perros , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Filogenia , Plásmidos , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA