Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Pathol ; 255(2): 120-131, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34155630

RESUMEN

Despite numerous unsuccessful clinical trials for anti-complement drugs to treat age-related macular degeneration (AMD), the complement system has not been fully explored as a target to stop drusen growth in patients with dry AMD. We propose that the resilient autoactivation of C3 by hydrolysis of its internal thioester (tick-over), which cannot be prevented by existing drugs, plays a critical role in the formation of drusenoid deposits underneath the retinal pigment epithelium (RPE). We have combined gene editing tools with stem cell technology to generate cell-based models that allow the role of the tick-over in sub-RPE deposit formation to be studied. The results demonstrate that structurally or genetically driven pathological events affecting the RPE and Bruch's membrane can lead to dysregulation of the tick-over, which is sufficient to stimulate the formation of sub-RPE deposits. This can be prevented with therapies that downregulate C3 expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Complemento C3/metabolismo , Vía Alternativa del Complemento/fisiología , Degeneración Macular , Edición Génica , Humanos , Células Madre Pluripotentes Inducidas , Degeneración Macular/patología
2.
Mol Cell ; 43(2): 285-98, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21777817

RESUMEN

The histone H3K27 methyltransferase EZH2 plays an important role in oncogenesis, by mechanisms that are incompletely understood. Here, we show that the JmjC domain histone H3 demethylase NDY1 synergizes with EZH2 to silence the EZH2 inhibitor miR-101. NDY1 and EZH2 repress miR-101 by binding its promoter in concert, via a process triggered by upregulation of NDY1. Whereas EZH2 binding depends on NDY1, the latter binds independently of EZH2. However, both are required to repress transcription. NDY1 and EZH2 acting in concert upregulate EZH2 and stabilize the repression of miR-101 and its outcome. NDY1 is induced by FGF-2 via CREB phosphorylation and activation, downstream of DYRK1A, and mediates the FGF-2 and EZH2 effects on cell proliferation, migration, and angiogenesis. The FGF-2-NDY1/EZH2-miR-101-EZH2 axis described here was found to be active in bladder cancer. These data delineate an oncogenic pathway that functionally links FGF-2 with EZH2 via NDY1 and miR-101.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Histona Demetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , MicroARNs/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2 , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , MicroARNs/metabolismo , Neovascularización Fisiológica , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Complejo Represivo Polycomb 2 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Pharmaceutics ; 15(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36678915

RESUMEN

Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.

4.
Biochim Biophys Acta ; 1802(6): 497-508, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20193760

RESUMEN

Mutations in human SCO2 gene, encoding the mitochondrial inner membrane Sco2 protein, have been found to be responsible for fatal infantile cardioencephalomyopathy and cytochrome c oxidase (COX) deficiency. One potentially fruitful therapeutic approach for this mitochondrial disorder should be considered the production of human recombinant full length L-Sco2 protein and its deliberate transduction into the mitochondria. Recombinant L-Sco2 protein, fused with TAT, a Protein Transduction Domain (PTD), was produced in bacteria and purified from inclusion bodies (IBs). Following solubilisation with l-arginine, this fusion L-Sco2 protein was transduced in cultured mammalian cells of different origin (U-87 MG, T24, K-562, and patient's primary fibroblasts) and assessed for stability, transduction into mitochondria, processing and impact on recovery of COX activity. Our results indicate that: a) l-Arg solution was effective in solubilising recombinant fusion L-Sco2 protein, derived from IBs; b) fusion L-Sco2 protein was delivered successfully via a time- and concentration-dependent process into the mitochondria of human U-87 MG and T24 cells; c) fusion L-Sco2 protein was also transduced in human K-562 cells, transiently depleted of SCO2 transcripts and thus COX deficient; transduction of this fusion protein led to partial recovery of COX activity in such cells; d) [(35)S]Methionine-labelled fusion L-Sco2 protein, produced in a cell free transcription/translation system and incubated with intact isolated mitochondria derived from K-562 cells, was efficiently processed to yield the corresponding mature Sco2 protein, thus justifying the potential of the transduced fusion L-Sco2 protein to successfully activate COX holoenzyme; and finally, e) recombinant fusion L-Sco2 protein was successfully transduced into the mitochondria of primary fibroblasts derived from SCO2/COX deficient patient and facilitated recovery of COX activity. These findings provide the rationale of delivering recombinant proteins via PTD technology as a model for therapeutic approach of mitochondrial disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Células Cultivadas , Clonación Molecular , Cartilla de ADN/genética , Complejo IV de Transporte de Electrones/metabolismo , Escherichia coli/genética , Humanos , Células K562 , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Chaperonas Moleculares , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Transducción Genética
5.
Cancer Res ; 74(14): 3935-46, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24853546

RESUMEN

The JmjC domain histone H3K36me2/me1 demethylase NDY1/KDM2B is overexpressed in various types of cancer. Here we show that knocking down NDY1 in a set of 10 cell lines derived from a broad range of human tumors inhibited their anchorage-dependent and anchorage-independent growth by inducing senescence and/or apoptosis in some and by inhibiting G1 progression in all. We further show that the knockdown of NDY1 in mammary adenocarcinoma cell lines decreased the number, size, and replating efficiency of mammospheres and downregulated the stem cell markers ALDH and CD44, while upregulating CD24. Together, these findings suggest that NDY1 is required for the self-renewal of cancer stem cells and are in agreement with additional findings showing that tumor cells in which NDY1 was knocked down undergo differentiation and a higher number of them is required to induce mammary adenocarcinomas, upon orthotopic injection in animals. Mechanistically, NDY1 functions as a master regulator of a set of miRNAs that target several members of the polycomb complexes PRC1 and PRC2, and its knockdown results in the de-repression of these miRNAs and the downregulation of their polycomb targets. Consistent with these observations, NDY1/KDM2B is expressed at higher levels in basal-like triple-negative breast cancers, and its overexpression is associated with higher rates of relapse after treatment. In addition, NDY1-regulated miRNAs are downregulated in both normal and cancer mammary stem cells. Finally, in primary human breast cancer, NDY1/KDM2B expression correlates negatively with the expression of the NDY1-regulated miRNAs and positively with the expression of their PRC targets.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas F-Box/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2 , Proteínas F-Box/genética , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Inmunofenotipificación , Histona Demetilasas con Dominio de Jumonji/genética , Fenotipo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteínas del Grupo Polycomb/química , Subunidades de Proteína/metabolismo , Interferencia de ARN
6.
Cancer Res ; 72(24): 6477-89, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23041550

RESUMEN

Overexpression of cyclin D1 is believed to endow mammary epithelial cells (MEC) with a proliferative advantage by virtue of its contribution to pRB inactivation. Accordingly, abrogation of the kinase-dependent function of cyclin D1 is sufficient to render mice resistant to breast cancer initiated by ErbB2. Here, we report that mouse cyclin D1(KE/KE) MECs (deficient in cyclin D1 activity) upregulate an autophagy-like process but fail to implement ErbB2-induced senescence in vivo. In addition, immortalized cyclin D1(KE/KE) MECs retain high rates of autophagy and reduced ErbB2-mediated transformation in vitro. However, highlighting its dual role during tumorigenesis, downregulation of autophagy led to an increase in senescence in cyclin D1(KE/KE) MECs. Autophagy upregulation was also confirmed in human mammary epithelial cells (HMEC) subjected to genetic and pharmacologic inhibition of cyclin D1 activity and, similar to our murine system, simultaneous inhibition of Cdk4/6 and autophagy in HMECs enhanced the senescence response. Collectively, our findings suggest a previously unrecognized function of cyclin D1 in suppressing autophagy in the mammary epithelium.


Asunto(s)
Autofagia/genética , Senescencia Celular/genética , Ciclina D1/fisiología , Epitelio/fisiología , Glándulas Mamarias Animales/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular/fisiología , Ciclina D1/genética , Ciclina D1/metabolismo , Epitelio/metabolismo , Femenino , Genes erbB-2/fisiología , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos
7.
Mol Genet Metab ; 81(3): 225-36, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14972329

RESUMEN

The human Sco2 protein is a cytochrome c oxidase assembly protein that participates in mitochondrial copper pathway, acting downstream of Cox17 protein. In a previous work, we detected mutations in the human SCO2 gene in three unrelated infants with fatal cardioencephalomyopathy and COX deficiency. In this study, full-length processed recombinant wild-type and two mutated forms of hSco2p (w/t-rhSco2p, E140K-rhSco2p, and S225F-rhSco2p) were produced in bacteria as soluble recombinant peptides for the first time and evaluated for differences in their physical state and ability to bind copper. Our data indicate the following: (a) w/t-rhSco2p and S225F-rhSco2p were found to be in a monomeric form in contrast to E140K-rhSco2p that was in a major non-reducible dimer and a minor monomer form; (b) wild-type and mutated rhSco2p exhibited clear differences in their physical conformational state, as shown by circular dichroism and thermal denaturation analyses; (c) copper binding studies showed that E140K-rhSco2p bound markedly less copper while S225F-rhSco2p more than expected as compared to amount of the copper bound with w/t-rhSco2p. rhCox17p served as positive control experiment. These data indicate that S225F and E140K mutations found in the SCO2 gene derived from patients alter the physical conformational state of encoded hSco2p that may disturb the normal copper transport pathway in mitochondria. These findings are valuable for understanding the molecular basis of fatal cardioencephalomyopathy and COX deficiency and for designing appropriate pharmacological interventions.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Mitocondrias/metabolismo , Mutación , Proteínas/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras , Dicroismo Circular , Proteínas Transportadoras de Cobre , Dimerización , Humanos , Proteínas Mitocondriales , Modelos Moleculares , Chaperonas Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA