RESUMEN
BACKGROUND: Schistosomiasis is a parasitic infection that can cause pulmonary hypertension (PH). Th2 CD4 T cells are necessary for experimental Schistosoma-PH. However, if T cells migrate to the lung to initiate, the localized inflammation that drives vascular remodeling and PH is unknown. METHODS: Mice were sensitized to Schistosoma mansoni eggs intraperitoneally and then challenged using tail vein injection. FTY720 was administered, which blocks lymphocyte egress from lymph nodes. T cells were quantified using flow cytometry, PH severity via heart catheterization, and cytokine concentration through ELISA. RESULTS: FTY720 decreased T cells in the peripheral blood, and increased T cells in the mediastinal lymph nodes. However, FTY720 treatment resulted in no change in PH or type 2 inflammation severity in mice sensitized and challenged with S. mansoni eggs, and the number of memory and effector CD4 T cells in the lung parenchyma was also unchanged. Notably, intraperitoneal Schistosoma egg sensitization alone resulted in a significant increase in intravascular lymphocytes and T cells, including memory T cells, although there was no significant change in parenchymal cell density, IL-4 or IL-13 expression, or PH. CONCLUSION: Blocking T cell migration did not suppress PH following Schistosoma egg challenge. Memory CD4 T cells, located in the lung intravascular space following egg sensitization, appear sufficient to cause type 2 inflammation and PH.
Asunto(s)
Hipertensión Pulmonar , Pulmón , Schistosoma mansoni , Animales , Ratones , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/parasitología , Hipertensión Pulmonar/inmunología , Pulmón/parasitología , Pulmón/inmunología , Pulmón/patología , Schistosoma mansoni/inmunología , Clorhidrato de Fingolimod/farmacología , Femenino , Linfocitos T CD4-Positivos/inmunología , Esquistosomiasis mansoni/inmunología , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/patología , Modelos Animales de Enfermedad , Interleucina-4/metabolismo , Citocinas/metabolismo , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Esquistosomiasis/complicaciones , Esquistosomiasis/inmunología , Esquistosomiasis/parasitologíaRESUMEN
BACKGROUND: Pulmonary hypertension (PH) can occur as a complication of schistosomiasis. In humans, schistosomiasis-PH persists despite antihelminthic therapy and parasite eradication. We hypothesized that persistent disease arises as a consequence of exposure repetition. METHODS: Following intraperitoneal sensitization, mice were experimentally exposed to Schistosoma eggs by intravenous injection, either once or three times repeatedly. The phenotype was characterized by right heart catheterization and tissue analysis. RESULTS: Following intraperitoneal sensitization, a single intravenous Schistosoma egg exposure resulted in a PH phenotype that peaked at 7-14 days, followed by spontaneous resolution. Three sequential exposures resulted in a persistent PH phenotype. Inflammatory cytokines were not significantly different between mice exposed to one or three egg doses, but there was an increase in perivascular fibrosis in those who received three egg doses. Significant perivascular fibrosis was also observed in autopsy specimens from patients who died of this condition. CONCLUSIONS: Repeatedly exposing mice to schistosomiasis causes a persistent PH phenotype, accompanied by perivascular fibrosis. Perivascular fibrosis may contribute to the persistent schistosomiasis-PH observed in humans with this disease.
Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar , Esquistosomiasis , Humanos , Animales , Ratones , Hipertensión Pulmonar/etiología , Fibrosis Pulmonar/complicaciones , Schistosoma mansoni , Pulmón/patología , Esquistosomiasis/complicaciones , Esquistosomiasis/patología , FibrosisRESUMEN
Whether all Schistosoma species cause pulmonary hypertension (PH) is unclear. Experimentally exposing mice to Schistosoma haematobium eggs caused PH, which was less severe than that induced by S. mansoni exposure. These findings align with the relatively uncommon reports of pulmonary arterial hypertension associated with S. haematobium.
RESUMEN
Acute high-altitude (HA) exposure can induce several pathologies. Dexamethasone (DEX) can be taken prophylactically to prevent HA disease, but the mechanism by which it acts in this setting is unclear. We studied the transcriptome of peripheral blood mononuclear cells (PBMCs) from 16 subjects at low altitude (LA, 225 m) and then 3 days after acute travel to HA (3500 m) during the India-Leh-Dexamethasone-Expedition-2020 (INDEX2020). Half of the participants received oral DEX prophylaxis 4 mg twice daily in an unblinded manner, starting 1 day prior to travel to HA, and 12 h prior to the first PBMC collection. PBMC transcriptome data were obtained from 16 subjects, half of whom received DEX. The principal component analysis demonstrated a clear separation of the groups by altitude and treatment. HA exposure resulted in a large number of gene expression changes, particularly in pathways of inflammation or the regulation of cell division, translation, or transcription. DEX prophylaxis resulted in changes in fewer genes, particularly in immune pathways. The gene sets modulated by HA and DEX were distinct. Deconvolution analysis to assess PBMC subpopulations suggested changes in B-cell, T-cell, dendritic cell, and myeloid cell numbers with HA and DEX exposures. Acute HA travel and DEX prophylaxis induce significant changes in the PBMC transcriptome. The observed benefit of DEX prophylaxis against HA disease may be mediated by suppression of inflammatory pathways and changing leukocyte population distributions.