Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 38(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30635335

RESUMEN

The zoonotic pathogen Brucella abortus is part of the Rhizobiales, which are alpha-proteobacteria displaying unipolar growth. Here, we show that this bacterium exhibits heterogeneity in its outer membrane composition, with clusters of rough lipopolysaccharide co-localizing with the essential outer membrane porin Omp2b, which is proposed to allow facilitated diffusion of solutes through the porin. We also show that the major outer membrane protein Omp25 and peptidoglycan are incorporated at the new pole and the division site, the expected growth sites. Interestingly, lipopolysaccharide is also inserted at the same growth sites. The absence of long-range diffusion of main components of the outer membrane could explain the apparent immobility of the Omp2b clusters, as well as unipolar and mid-cell localizations of newly incorporated outer membrane proteins and lipopolysaccharide. Unipolar growth and limited mobility of surface structures also suggest that new surface variants could arise in a few generations without the need of diluting pre-existing surface antigens.


Asunto(s)
Membrana Externa Bacteriana/metabolismo , Proteínas Bacterianas/metabolismo , Brucella abortus/clasificación , Brucella abortus/crecimiento & desarrollo , Lipopolisacáridos/metabolismo , Peptidoglicano/metabolismo , Porinas/metabolismo , Brucella abortus/genética , Brucella abortus/metabolismo
2.
BMC Microbiol ; 21(1): 244, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488629

RESUMEN

BACKGROUND: Fish skin represents an ancient vertebrate mucosal surface, sharing characteristics with other mucosal surfaces including those of the intestine. The skin mucosa is continuously exposed to microbes in the surrounding water and is therefore important in the first line defense against environmental pathogens by preventing bacteria from accessing the underlying surfaces. Understanding the microbe-host interactions at the fish skin mucosa is highly relevant in order to understand and control infection, commensalism, colonization, persistence, infection, and disease. Here we investigate the interactions between the pathogenic bacteria Aeromonas salmonicida (A. salmonicida) and Yersinia ruckeri (Y. ruckeri), respectively, and the skin mucosal surface of Atlantic salmon fry using AFM force spectroscopy. RESULTS: The results obtained revealed that when retracting probes functionalized with bacteria from surfaces coated with immobilized mucins, isolated from salmon mucosal surfaces, rupture events reflecting the disruption of adhesive interactions were observed, with rupture strengths centered around 200 pN. However, when retracting probes functionalized with bacteria from the intact mucosal surface of salmon fish fry no adhesive interactions could be detected. Furthermore, rheological measurements revealed a near fluid-like behavior for the fish fry skin mucus. Taken together, the experimental data indicate that the adhesion between the mucin molecules within the mucous layer may be significantly weaker than the interaction between the bacteria and the mucin molecules. The bacteria, immobilized on the AFM probe, do bind to individual mucins in the mucosal layer, but are released from the near fluid mucus with little resistance upon retraction of the AFM probe, to which they are immobilized. CONCLUSION: The data provided in the current paper reveal that A. salmonicida and Y. ruckeri do bind to the immobilized mucins. However, when retracting the bacteria from intact mucosal surfaces, no adhesive interactions are detected. These observations suggest a mechanism underlying the protective function of the mucosal surface based on the clearing of potential threats by adhering them to loosely attached mucus that is subsequently released from the fish skin.


Asunto(s)
Adhesión Bacteriana , Microscopía de Fuerza Atómica/métodos , Membrana Mucosa/microbiología , Moco/microbiología , Salmón/microbiología , Piel/microbiología , Aeromonas salmonicida/patogenicidad , Aeromonas salmonicida/fisiología , Animales , Bacterias/clasificación , Bacterias/patogenicidad , Enfermedades de los Peces/microbiología , Moco/metabolismo , Yersinia ruckeri/patogenicidad , Yersinia ruckeri/fisiología
3.
Semin Cell Dev Biol ; 73: 165-176, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28668355

RESUMEN

Antimicrobial molecules have been used for more than 50 years now and are the basis of modern medicine. No surgery can nowdays be imagined to be performed without antibiotics; dreadful diseases like tuberculosis, leprosis, siphilys, and more broadly all microbial induced diseases, can be cured only through the use of antimicrobial treatments. However, the situation is becoming more and more complex because of the ability of microbes to adapt, develop, acquire, and share mechanisms of resistance to antimicrobial agents. We choose to introduce this review by briefly drawing the panorama of antimicrobial discovery and development, but also of the emergence of microbial resistance. Then we describe how Atomic Force Microscopy (AFM) can be used to provide a better understanding of the mechanisms of action of these drugs at the nanoscale level on microbial interfaces. In this section, we will address these questions: (1) how does drug treatment affect the morphology of single microbes?; (2) do antimicrobial molecules modify the nanomechanical properties of microbes, or do the nanomechanical properties of microbes play a role in antimicrobial activity and efficiency?; and (3) how are the adhesive abilitites of microbes affected by antimicrobial drugs treatment? Finally, in a second part of this review we focus on recent studies aimed at changing the paradigm of the single molecule/cell technology that AFM typically represents. Recent work dealing with the creation of a microbe array which can be explored by AFM will be presented, as these developments constitute the first steps toward transforming AFM into a higher throughput technology. We also discuss papers using AFM as NanoMechnanicalSensors (NEMS), and demonstrate the interest of such approaches in clinical microbiology to detect quickly and with high accuracy microbial resistance.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Bacterias/ultraestructura , Microscopía de Fuerza Atómica , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Antibacterianos/química , Antifúngicos/química , Bacterias/citología , Nanotecnología , Saccharomyces cerevisiae/citología
4.
Proc Natl Acad Sci U S A ; 114(14): 3738-3743, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28320940

RESUMEN

Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell-cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from ß-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Proteínas del Tejido Nervioso/química , Péptidos/farmacología , Staphylococcus aureus/fisiología , Adhesión Bacteriana , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Péptidos/química , Unión Proteica , Análisis de la Célula Individual
5.
Water Sci Technol ; 82(6): 1009-1024, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33055392

RESUMEN

In microalgae harvesting, flocculation is usually a compulsory preliminary step to further separation by sedimentation or flotation. For some microalgae species, and under certain growth conditions, flocculation can occur naturally. Natural flocculation presents many advantages as it does not require the addition of any flocculants to the culture medium and shows high efficiency rate. But because natural flocculation is so specific to the species and conditions, and thanks to the knowledge accumulated over the last years on flocculation mechanisms, researchers have developed strategies to induce this natural harvesting. In this review, we first decipher at the molecular scale the underlying mechanisms of natural flocculation and illustrate them by selected studies from the literature. Then we describe the developed strategies to induce natural flocculation that include the use of biopolymers, chemically modified or not, or involve mixed species cultures. But all these strategies need the addition of external compounds or microorganism which can present some issues. Thus alternative directions to completely eliminate the need for an external molecule, through genetic engineering of microalgae strains, are presented and discussed in the third part of this review.


Asunto(s)
Microalgas , Bioensayo , Biomasa , Medios de Cultivo , Floculación
6.
Proc Natl Acad Sci U S A ; 113(2): 410-5, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26715750

RESUMEN

Staphylococcus aureus surface protein SasG promotes cell-cell adhesion during the accumulation phase of biofilm formation, but the molecular basis of this interaction remains poorly understood. Here, we unravel the mechanical properties of SasG on the surface of living bacteria, that is, in its native cellular environment. Nanoscale multiparametric imaging of living bacteria reveals that Zn(2+) strongly increases cell wall rigidity and activates the adhesive function of SasG. Single-cell force measurements show that SasG mediates cell-cell adhesion via specific Zn(2+)-dependent homophilic bonds between ß-sheet-rich G5-E domains on neighboring cells. The force required to unfold individual domains is remarkably strong, up to ∼500 pN, thus explaining how SasG can withstand physiological shear forces. We also observe that SasG forms homophilic bonds with the structurally related accumulation-associated protein of Staphylococcus epidermidis, suggesting the possibility of multispecies biofilms during host colonization and infection. Collectively, our findings support a model in which zinc plays a dual role in activating cell-cell adhesion: adsorption of zinc ions to the bacterial cell surface increases cell wall cohesion and favors the projection of elongated SasG proteins away from the cell surface, thereby enabling zinc-dependent homophilic bonds between opposing cells. This work demonstrates an unexpected relationship between mechanics and adhesion in a staphylococcal surface protein, which may represent a general mechanism among bacterial pathogens for activating cell association.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Staphylococcus aureus/fisiología , Zinc/farmacología , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/química , Fenómenos Biomecánicos/efectos de los fármacos , Fenómenos Biofísicos/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica , Modelos Biológicos , Estructura Terciaria de Proteína , Staphylococcus aureus/efectos de los fármacos
7.
J Struct Biol ; 197(1): 65-69, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26707623

RESUMEN

Staphylococcus epidermidis and Staphylococcus aureus are two important nosocomial pathogens that form biofilms on indwelling medical devices. Biofilm infections are difficult to fight as cells within the biofilm show increased resistance to antibiotics. Our understanding of the molecular interactions driving bacterial adhesion, the first stage of biofilm formation, has long been hampered by the paucity of appropriate force-measuring techniques. In this minireview, we discuss how atomic force microscopy techniques have enabled to shed light on the molecular forces at play during staphylococcal adhesion. Specific highlights include the study of the binding mechanisms of adhesion molecules by means of single-molecule force spectroscopy, the measurement of the forces involved in whole cell interactions using single-cell force spectroscopy, and the probing of the nanobiophysical properties of living bacteria via multiparametric imaging. Collectively, these findings emphasize the notion that force and function are tightly connected in staphylococcal adhesion.


Asunto(s)
Adhesión Bacteriana , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Biopelículas/crecimiento & desarrollo , Microscopía de Fuerza Atómica , Staphylococcus aureus/patogenicidad
8.
J Biol Chem ; 291(21): 11323-36, 2016 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-27022026

RESUMEN

To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes.


Asunto(s)
Lactococcus lactis/metabolismo , Nucleótidos/metabolismo , Aspartato Carbamoiltransferasa/genética , Aspartato Carbamoiltransferasa/metabolismo , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Elasticidad , Genes Bacterianos , Lactococcus lactis/genética , Lactococcus lactis/crecimiento & desarrollo , Muramidasa/farmacología , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo
9.
Infect Immun ; 85(6)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373353

RESUMEN

Staphylococcus aureus skin infection is a frequent and recurrent problem in children with the common inflammatory skin disease atopic dermatitis (AD). S. aureus colonizes the skin of the majority of children with AD and exacerbates the disease. The first step during colonization and infection is bacterial adhesion to the cornified envelope of corneocytes in the outer layer, the stratum corneum. Corneocytes from AD skin are structurally different from corneocytes from normal healthy skin. The objective of this study was to identify bacterial proteins that promote the adherence of S. aureus to AD corneocytes. S. aureus strains from clonal complexes 1 and 8 were more frequently isolated from infected AD skin than from the nasal cavity of healthy children. AD strains had increased ClfB ligand binding activity compared to normal nasal carriage strains. Adherence of single S. aureus bacteria to corneocytes from AD patients ex vivo was studied using atomic force microscopy. Bacteria expressing ClfB recognized ligands distributed over the entire corneocyte surface. The ability of an isogenic ClfB-deficient mutant to adhere to AD corneocytes compared to that of its parent clonal complex 1 clinical strain was greatly reduced. ClfB from clonal complex 1 strains had a slightly higher binding affinity for its ligand than ClfB from strains from other clonal complexes. Our results provide new insights into the first step in the establishment of S. aureus colonization in AD patients. ClfB is a key adhesion molecule for the interaction of S. aureus with AD corneocytes and represents a target for intervention.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Dermatitis Atópica/microbiología , Células Epiteliales/microbiología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Preescolar , Femenino , Proteínas Filagrina , Humanos , Masculino , Cavidad Nasal/microbiología , Eliminación de Secuencia , Piel/citología , Piel/microbiología , Staphylococcus aureus/genética
10.
Appl Environ Microbiol ; 82(15): 4789-4801, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27235439

RESUMEN

UNLABELLED: A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE: Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/genética , Membrana Celular/ultraestructura , Pared Celular/genética , Pared Celular/ultraestructura , Microscopía de Fuerza Atómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
11.
Colloids Surf B Biointerfaces ; 234: 113701, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101142

RESUMEN

Biofouling is a persistent problem in many sectors (healthcare, medicine, marine, and membrane filtration processes). To control the biofouling of surfaces, it is essential to overcome or reduce the adhesion forces between biofilms and surfaces. To access and understand the molecular basis of these interactions, atomic force microscopy (AFM) is a well-suited technology that can measure adhesion forces at the piconewton level. However, AFM-based existing methods only probe interactions between individual cells and surfaces, which is not representative of realistic conditions given that bacteria mainly exist in biofilms. We develop here an original method using FluidFM, a combination of AFM and microfluidics, to probe the adhesion forces between biofilms and filtration membranes modified with an anti-biofouling agent, vanillin. This strategy involves i) growing bacterial biofilms on micrometer-sized polystyrene beads, ii) aspirating these biofilm beads at the aperture of microfluidic cantilevers and iii) using them as probes in force spectroscopy experiments. The results obtained first showed that COOH-functionalized polystyrene beads are more suitable for bacterial growth, and that biofilms obtained after 3 h of incubation could be used with FluidFM. Then, biofilm-scale force spectroscopy experiments showed a significant decrease in adhesion forces, adhesion work, and adhesion events after membrane modification, demonstrating the potential of vanillin-coated membranes to reduce biofouling. In addition, the comparison between results at the individual cell and biofilm scales highlighted the complexity of polymeric matrix unbinding and/or unfolding in the biofilm, showing that individual cells behave differently from biofilms. Overall, this method could have implications in the fields of materials science, chemical engineering, health, and the environment.


Asunto(s)
Benzaldehídos , Incrustaciones Biológicas , Incrustaciones Biológicas/prevención & control , Poliestirenos , Biopelículas , Bacterias , Microscopía de Fuerza Atómica/métodos , Tecnología , Adhesión Bacteriana
12.
Bioresour Technol ; : 131290, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153690

RESUMEN

Extracellular soluble algal organic matter (AOM) significantly interferes with microalgae flocculation. This study investigated the effects of various AOM fractions on Chlorella sp. flocculation using ferric chloride (FeCl3), sodium hydroxide (NaOH), and chitosan. All flocculants achieved high separation efficiency (87-99 %), but higher dosages were required in the presence of AOM. High molecular weight (>50 kDa) AOM fraction was identified as the primary inhibitor of flocculation across different pH levels, whereas low/medium molecular weight (<3 and < 50 kDa) AOM had minimal impact. Compositional analysis revealed that the inhibitory AOM fraction is a glycoprotein rich in carbohydrates, including neutral, amino, and acidic sugars. The significance of this study is in identifying carboxyl groups (-COOH) from acidic monomers in > 50 kDa AOM that inhibit flocculation. Understanding AOM composition and the interaction dynamics between AOM, cells, and flocculants is crucial for enhancing the techno-economics and sustainability of flocculation-based microalgae harvesting.

13.
ACS Appl Bio Mater ; 7(6): 4017-4028, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38788153

RESUMEN

Microalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness. Previous research from our group proposed using an amphiphilic chitosan derivative, polyoctyl chitosan (PO-chitosan), to functionalize bubbles used in dissolved air flotation (DAF). Molecular-scale studies performed using atomic force microscopy (AFM) revealed that PO-chitosan's efficiency correlates with cell surface properties, particularly hydrophobic ones, raising the question of whether this molecule can in fact be used more generally to harvest different microalgae. Evaluating this, we used a different strain of Chlorella vulgaris and first characterized its surface properties using AFM. Results showed that cells were hydrophilic but could still interact with PO-chitosan on bubble surfaces through a different mechanism based on specific interactions. Although force levels were low, flotation resulted in 84% separation, which could be explained by the presence of AOM (algal organic matter) that also interacts with functionalized bubbles, enhancing the overall separation. Finally, flocculation was also shown to be efficient and pH-independent, demonstrating the potential of PO-chitosan for harvesting microalgae with different cell surface properties and thus for further sustainable large-scale applications.


Asunto(s)
Materiales Biocompatibles , Quitosano , Floculación , Ensayo de Materiales , Microalgas , Propiedades de Superficie , Quitosano/química , Microalgas/química , Microalgas/metabolismo , Microalgas/citología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tamaño de la Partícula , Microscopía de Fuerza Atómica , Interacciones Hidrofóbicas e Hidrofílicas , Chlorella vulgaris/metabolismo , Chlorella vulgaris/química , Tensoactivos/química
14.
Mar Environ Res ; 188: 106020, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187087

RESUMEN

Aggregation of diatoms is of global importance to understand settling of particulate organic carbon in aquatic systems. In this study, we investigate the aggregation of the marine diatom Cylindrotheca closterium during the exponential growth phase under hypo-saline conditions. The results of the flocculation/flotation experiments show that the aggregation of the diatom depends on the salinity. In favorable growth conditions for marine diatoms (salinity of 35), the highest aggregation is achieved. To explain these observations, we used a surface approach combining atomic force microscopy (AFM) and electrochemical methods to characterize both the cell surface properties and the structure of the extracellular polymeric substances (EPS) cell produce, and to quantify the amount of surface-active organic matter released. At a salinity of 35, the results showed that diatoms are soft, hydrophobic and release only small amounts of EPS organized into individual short fibrils. In contrast, diatoms adapt to a salinity of 5 by becoming much stiffer and more hydrophilic, producing larger amounts of EPS that structurally form an EPS network. Both adaptation responses of diatoms, the hydrophobic properties of diatoms and the release of EPS, appear to play an important role in diatom aggregation and explain the behavior observed at different salinities. This biophysical study provides important evidence allowing to get a deep insight into diatom interactions at the nanoscale, which may contribute to a better understanding of large-scale aggregation phenomena in aquatic systems.


Asunto(s)
Closterium , Diatomeas , Matriz Extracelular de Sustancias Poliméricas , Microscopía de Fuerza Atómica/métodos , Salinidad
15.
Bioelectrochemistry ; 150: 108360, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36621049

RESUMEN

The aim of this biophysical study is to characterize reconstructed membrane vesicles obtained from microalgae in terms of their morphology, properties, composition, and ability to transport a model drug. The reconstructed vesicles were either emptied or non-emptied and exhibited a non-uniform distribution of spherical surface structures that could be associated with surface coat proteins, while in between there were pore-like structures of up to 10 nm that could contribute to permeability. The reconstructed vesicles were very soft and hydrophilic, which could be attributed to their composition. The vesicles were rich in proteins and were mostly derived from the cytoplasm and chloroplasts. We demonstrated that all lipid classes of D. tertiolecta are involved in the formation of the reconstructed membrane vesicles, where they play fundamental role to maintain the vesicle structure. The vesicles appeared to be permeable to calcein, impermeable to FITC-ovalbumin, and semipermeable to FITC-concanavalin A, which may be due to a specific surface interaction with glucose/mannose units that could serve as a basis for the development of drug carriers. Finally, the reconstructed membrane vesicles could pave a new way as sustainable and environmentally friendly marine bioinspired carriers and serve for studies on microtransport of materials and membrane-related processes contributing to advances in life sciences and biotechnology.


Asunto(s)
Microalgas , Fluoresceína-5-Isotiocianato , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Proteínas de la Membrana
16.
Nat Phys ; 18(4): 411-416, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37152719

RESUMEN

Cells that grow in confined spaces eventually build up mechanical compressive stress. This growth-induced pressure (GIP) decreases cell growth. GIP is important in a multitude of contexts from cancer, to microbial infections, to biofouling, yet our understanding of its origin and molecular consequences remains limited. Here, we combine microfluidic confinement of the yeast Saccharomyces cerevisiae, with rheological measurements using genetically encoded multimeric nanoparticles (GEMs) to reveal that growth-induced pressure is accompanied with an increase in a key cellular physical property: macromolecular crowding. We develop a fully calibrated model that predicts how increased macromolecular crowding hinders protein expression and thus diminishes cell growth. This model is sufficient to explain the coupling of growth rate to pressure without the need for specific molecular sensors or signaling cascades. As molecular crowding is similar across all domains of life, this could be a deeply conserved mechanism of biomechanical feedback that allows environmental sensing originating from the fundamental physical properties of cells.

17.
Sci Total Environ ; 832: 155036, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390366

RESUMEN

Plastic pollution has become a significant concern in aquatic ecosystems, where photosynthetic microorganisms such as microalgae represent a major point of entry in the food chain. For this reason an important challenge is to better understand the consequences of plastic pollution on microalgae and the mechanisms underlying the interaction between plastic particles and cell's interfaces. In this study, to answer such questions, we developed an interdisciplinary approach to investigate the role of plastic microparticles in the aggregation of a freshwater microalgae species, Chlorella vulgaris. First, the biophysical characterization, using atomic force microscopy, of the synthetic plastic microparticles used showed that they have in fact similar properties than the ones found in the environment, with a rough, irregular and hydrophobic surface, thereby making them a relevant model. Then a combination of optical imaging and separation experiments showed that the presence of plastic particles in microalgae cultures induced the production of exopolysaccharides (EPS) by the cells, responsible for their aggregation. However, cells that were not cultured with plastic particles could also form aggregates when exposed to the particles after culture. To understand this, advanced single-cell force spectroscopy experiments were performed to probe the interactions between cells and plastic microparticles; the results showed that cells could directly interact with plastic particles through hydrophobic interactions. In conclusion, our experimental approach allowed highlighting the two mechanisms by which plastic microparticles trigger cell aggregation; by direct contact or by inducing the production of EPS by the cells. Because these microalgae aggregates containing plastic are then consumed by bigger animals, these results are important to understand the consequences of plastic pollution on a large scale.


Asunto(s)
Chlorella vulgaris , Microalgas , Contaminantes Químicos del Agua , Animales , Ecosistema , Microplásticos , Microscopía de Fuerza Atómica , Plásticos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
J Colloid Interface Sci ; 604: 785-797, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303172

RESUMEN

Understanding the molecular mechanisms underlying bubble-(bio)surfaces interactions is currently a challenge that if overcame, would allow to understand and control the various processes in which they are involved. Atomic force microscopy is a useful technique to measure such interactions, but it is limited by the large size and instability of the bubbles that it can use, attached either on cantilevers or on surfaces. We here present new developments where microsized and stable bubbles are produced using FluidFM technology, which combines AFM and microfluidics. The air bubbles produced were used to probe the interactions with hydrophobic samples, showing that bubbles in water behave like hydrophobic surfaces. They thus could be used to measure the hydrophobic properties of microorganisms' surfaces, but in this case the interactions are also influenced by electrostatic forces. Finally a strategy was developed to functionalize their surface, thereby modulating their interactions with microorganism interfaces. This new method provides a valuable tool to understand bubble-(bio)surfaces interactions but also to engineer them.


Asunto(s)
Aire , Agua , Interacciones Hidrofóbicas e Hidrofílicas , Microfluídica , Microscopía de Fuerza Atómica
19.
J Vis Exp ; (170)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33871455

RESUMEN

The method presented in this paper aims to automate Bio-AFM experiments and the recording of force curves. Using this method, it is possible to record forces curves on 1000 cells in 4 hours automatically. To maintain a 4 hour analysis time, the number of force curves per cell is reduced to 9 or 16. The method combines a Jython based program and a strategy for assembling cells on defined patterns. The program, implemented on a commercial Bio-AFM, can center the tip on the first cell of the array and then move, automatically, from cell to cell while recording force curves on each cell. Using this methodology, it is possible to access the biophysical parameters of the cells such as their rigidity, their adhesive properties, etc. With the automation and the large number of cells analyzed, one can access the behavior of the cell population. This is a breakthrough in the Bio-AFM field where data have, so far, been recorded on only a few tens of cells.


Asunto(s)
Candida albicans/citología , Microscopía de Fuerza Atómica/métodos , Automatización , Biofisica
20.
Sci Rep ; 11(1): 4846, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649417

RESUMEN

Lactic acid bacteria, in particular Lactococcus lactis, are widely used in the food industry, for the control and/or the protection of the manufacturing processes of fermented food. While L. lactis has been reported to form compact and uniform biofilms it was recently shown that certain strains able to display pili at their surface form more complex biofilms exhibiting heterogeneous and aerial structures. As the impact of those biofilm structures on the biomechanical properties of the biofilms is poorly understood, these were investigated using AFM force spectroscopy and imaging. Three types of strains were used i.e., a control strain devoid of pili and surface mucus-binding protein, a strain displaying pili but no mucus-binding proteins and a strain displaying both pili and a mucus-binding protein. To identify potential correlations between the nanomechanical measurements and the biofilm architecture, 24-h old biofilms were characterized by confocal laser scanning microscopy. Globally the strains devoid of pili displayed smoother and stiffer biofilms (Young Modulus of 4-100 kPa) than those of piliated strains (Young Modulus around 0.04-0.1 kPa). Additional display of a mucus-binding protein did not affect the biofilm stiffness but made the biofilm smoother and more compact. Finally, we demonstrated the role of pili in the biofilm cohesiveness by monitoring the homotypic adhesion of bacteria to the biofilm surface. These results will help to understand the role of pili and mucus-binding proteins withstanding external forces.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/metabolismo , Lactococcus lactis/fisiología , Microbiología de Alimentos , Industria de Procesamiento de Alimentos , Moco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA