Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Chemistry ; 29(55): e202301718, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37439718

RESUMEN

The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines. Mechanistic investigations also proved the key role of the g-CN to form reactive superoxide radicals from O2 via single electron transfer. Importantly, this photocatalytic transformation provides a variety of functionalized formamides (15 examples, up to 89 % yield).

2.
Chemistry ; 29(71): e202301708, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37740618

RESUMEN

Carbon nanostructures (CNSs) are attractive components to attain nanocomposites, yet their hydrophobic nature and strong tendency to aggregate often limit their use in aqueous conditions and negatively impact their properties. In this work, carbon nanohorns (CNHs), multi-walled carbon nanotubes (CNTs), and graphene (G) are first oxidized, and then reacted to covalently anchor the self-assembling tripeptide L-Leu-D-Phe-D-Phe to improve their dispersibility in phosphate buffer, and favor the formation of hydrogels formed by the self-organizing L-Leu-D-Phe-D-Phe present in solution. The obtained nanocomposites are then characterized by transmission electron microscopy (TEM), oscillatory rheology, and conductivity measurements to gain useful insights as to the key factors that determine self-healing ability for the future design of this type of nanocomposites.

3.
Chemistry ; 29(61): e202301740, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37522641

RESUMEN

The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading. This study describes the development of a highly active and reusable palladium-based catalyst on alumina (Pd8 /Al2 O3 ) for Suzuki cross-coupling reactions. An octanuclear tiara-like palladium complex was selected as active phase precursor to give isolated Pd-clusters of ca. 1 nm in size on Al2 O3 . The catalyst was thoroughly characterised by several complementary techniques to assess its structural and chemical nature. The high specific activity of the catalyst has allowed to carry out the cross-coupling reaction in 30 min using only 0.12 mol % of Pd loading under very mild and green reaction conditions. Screening of various substrates and selectivity tests, combined with recycling and benchmarking experiments, have been used to highlight the great potentialities of this new Pd8 /Al2 O3 catalyst.

4.
Chem Rev ; 121(21): 13620-13697, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34644065

RESUMEN

Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.


Asunto(s)
Carbono , Hierro , Carbono/química , Catálisis , Hierro/química , Metales , Nitrógeno/química
5.
Angew Chem Int Ed Engl ; 62(48): e202313540, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37801043

RESUMEN

Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.

6.
Angew Chem Int Ed Engl ; 61(43): e202210640, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36074040

RESUMEN

Carbon nitride (CN) is a heterogeneous photocatalyst that combines good structural properties and a broad scope. The photocatalytic efficiency of CN is associated with the presence of defective and radical species. An accurate description of defective states-both at a local and extended level-is key to develop a thorough mechanistic understanding of the photophysics of CN. In turn, this will maximise the generation and usage of photogenerated charge carriers and minimise wasteful charge recombination. Here the influence of morphology and light-excitation on the number and chemical nature of radical defects is assessed. By exploiting the magnetic dipole-dipole coupling, the spatial distribution of native radicals in CN is derived with high precision. From the analysis an average distance in the range 1.99-2.34 nm is determined, which corresponds to pairs of radicals located approximately four tri-s-triazine units apart.

7.
Small ; 17(16): e2006473, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33624397

RESUMEN

A heterogeneous catalyst is a backbone of modern sustainable green industries; and understanding the relationship between its structure and properties is the key for its advancement. Recently, many upscaling synthesis strategies for the development of a variety of respectable control atomically precise heterogeneous catalysts are reported and explored for various important applications in catalysis for energy and environmental remediation. Precise atomic-scale control of catalysts has allowed to significantly increase activity, selectivity, and in some cases stability. This approach has proved to be relevant in various energy and environmental related technologies such as fuel cell, chemical reactors for organic synthesis, and environmental remediation. Therefore, this review aims to critically analyze the recent progress on single-atom catalysts (SACs) application in oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and chemical and/or electrochemical organic transformations. Finally, opportunities that may open up in the future are summarized, along with suggesting new applications for possible exploitation of SACs.


Asunto(s)
Hidrógeno , Catálisis
8.
Nano Lett ; 20(5): 3663-3672, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32320257

RESUMEN

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 °C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 °C under moderately concentrated solar irradiation (∼20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10-21 L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h-1 m-2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.

9.
J Am Chem Soc ; 142(23): 10373-10382, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32426969

RESUMEN

The ability to stabilize very small Pt crystallites in supported-metal catalysts following harsh treatments is an important industrial problem. Here, we demonstrate that Pt particles can be maintained in the 1- to 2-nm range following multiple oxidation and reduction cycles at 1073 K when the particles are supported on 0.5-nm LaFeO3 films that have been deposited onto MgAl2O4 using atomic layer deposition. Characterization by scanning transmission electron microscopy suggests that when the catalyst is oxidized at 1073 K, the Pt crystallites are oriented with respect to the underlying LaFeO3. X-ray absorption spectroscopy also shows evidence of changes in the Pt environment. CO-oxidation rates for the reduced catalyst remain unchanged after five redox cycles at 1073 K. Epitaxial growth of Pt clusters and the consequent strong metal-support interaction between Pt and LaFeO3 are suggested to be the main reasons for the enhanced catalytic performances.

10.
Molecules ; 25(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260409

RESUMEN

Nanostructured gels have emerged as an attractive functional material to innovate the field of energy, with applications ranging from extraction and purification to nanocatalysts with unprecedented performance. In this review we discuss the various classes of nanostructured gels and the most recent advancements in the field with a perspective on future directions of this challenging area.


Asunto(s)
Geles/química , Nanoestructuras/química , Catálisis , Ambiente , Geles/síntesis química , Fenómenos Físicos , Polímeros/síntesis química , Polímeros/química , Reciclaje/métodos , Purificación del Agua/métodos
11.
Molecules ; 25(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630001

RESUMEN

Self-assembling peptides are attracting wide interest as biodegradable building blocks to achieve functional nanomaterials that do not persist in the environment. Amongst the many applications, biocatalysis is gaining momentum, although a clear structure-to-activity relationship is still lacking. This work applied emerging design rules to the heterochiral octapeptide sequence His-Leu-DLeu-Ile-His-Leu-DLeu-Ile for self-assembly into nanofibrils that, at higher concentration, give rise to a supramolecular hydrogel for the mimicry of esterase-like activity. The peptide was synthesized by solid-phase and purified by HPLC, while its identity was confirmed by 1H-NMR and electrospray ionization (ESI)-MS. The hydrogel formed by this peptide was studied with oscillatory rheometry, and the supramolecular behavior of the peptide was investigated with transmission electron microscopy (TEM) analysis, circular dichroism (CD) spectroscopy, thioflavin T amyloid fluorescence assay, and attenuated total reflectance (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The biocatalytic activity was studied by monitoring the hydrolysis of p-nitrophenyl acetate (pNPA) at neutral pH, and the reaction kinetics followed an apparent Michaelis-Menten model, for which a Lineweaver-Burk plot was produced to determine its enzymatic parameters for a comparison with the literature. Finally, LC-MS analysis was conducted on a series of experiments to evaluate the extent of, if any, undesired peptide acetylation at the N-terminus. In conclusion, we provide new insights that allow gaining a clearer picture of self-assembling peptide design rules for biocatalysis.


Asunto(s)
Esterasas/metabolismo , Hidrogeles/química , Nanofibras/química , Nitrofenoles/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Biocatálisis
12.
Proc Natl Acad Sci U S A ; 113(15): 3966-71, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27035977

RESUMEN

Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron-hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems.

13.
Molecules ; 24(20)2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635398

RESUMEN

Cerium oxide (CeO2) nanoparticles (NPs) are used in polishing products and absorbents, as promoters in wound healing, and as organopesticide decontaminants. While systemic bioaccumulation and organ toxicity has been described after inhalation, data on CeO2 NPs' transdermal permeation are lacking. Our study was an in vitro investigation of the permeation of 17-nm CeO2 NPs dispersed in synthetic sweat (1 g L-1) using excised human skin on Franz cells. Experiments were performed using intact and needle-abraded skin, separately. The average amount of Ce into intact and damaged skin samples was 3.64 ± 0.15 and 7.07 ± 0.78 µg cm-2, respectively (mean ± SD, p = 0.04). Ce concentration in the receiving solution was 2.0 ± 0.4 and 3.3 ± 0.7 ng cm-2 after 24 h (p = 0.008). The Ce content was higher in dermal layers of damaged skin compared to intact skin (2.93 ± 0.71 µg cm-2 and 0.39 ± 0.16 µg cm-2, respectively; p = 0.004). Our data showed a very low dermal absorption and transdermal permeation of cerium, providing a first indication of Ce skin uptake due to contact with CeO2.


Asunto(s)
Cerio/análisis , Piel/lesiones , Cerio/toxicidad , Femenino , Humanos , Nanopartículas del Metal , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Piel/química , Absorción Cutánea
14.
J Am Chem Soc ; 140(11): 4172-4181, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29482317

RESUMEN

The interface of metal-oxide plays pivotal roles in catalytic reactions, but its catalytic function is still not clear. In this study, we report the high activity of nanostructured Ru/ceria (Ru-clusters/ceria) in the ethylene methoxycarbonylation (EMC) reaction in the absence of acid promoter. The catalyst offers 92% yield of MP with TOF of 8666 h-1, which is about 2.5 times of homogeneous Pd catalyst (∼3500 h-1). The interfacial Lewis acid-base pair [Ru-O-Ce-Vö], which consists of acidic Ce-Vö (oxygen vacancy) site and basic interfacial oxygen of Ru-O-Ce linkage, acts as active site for the dissociation of methanol and the subsequent transfer of hydrogen to the activated ethylene, which is the key step in acid-promoter-free EMC reaction. The combination of 1H MAS NMR, pyridine-IR and DFT calculations reveals the hydrogen species derived from methanol contains Brönsted acidity. The EMC reaction mechanism under acid-promoter-free condition over Ru-clusters/ceria catalyst is discussed.

15.
J Am Chem Soc ; 140(14): 4841-4848, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29319305

RESUMEN

The concept of self-regenerating or "smart" catalysts, developed to mitigate the problem of supported metal particle coarsening in high-temperature applications, involves redispersing large metal particles by incorporating them into a perovskite-structured support under oxidizing conditions and then exsolving them as small metal particles under reducing conditions. Unfortunately, the redispersion process does not appear to work in practice because the surface areas of the perovskite supports are too low and the diffusion lengths for the metal ions within the bulk perovskite too short. Here, we demonstrate reversible activation upon redox cycling for CH4 oxidation and CO oxidation on Pd supported on high-surface-area LaFeO3, prepared as a thin conformal coating on a porous MgAl2O4 support using atomic layer deposition. The LaFeO3 film, less than 1.5 nm thick, was shown to be initially stable to at least 900 °C. The activated catalysts exhibit stable catalytic performance for methane oxidation after high-temperature treatment.

16.
Langmuir ; 34(15): 4568-4574, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29624397

RESUMEN

Photoreforming promoted by metal oxide nanophotocatalysts is an attractive route for clean and sustainable hydrogen generation. In the present work, we propose for the first time the use of supported Mn3O4 nanosystems, both pure and functionalized with Au nanoparticles (NPs), for hydrogen generation by photoreforming. The target oxide systems, prepared by chemical vapor deposition (CVD) and decorated with gold NPs by radio frequency (RF) sputtering, were subjected to a thorough chemico-physical characterization and utilized for a proof-of-concept H2 generation in aqueous ethanolic solutions under simulated solar illumination. Pure Mn3O4 nanosystems yielded a constant hydrogen production rate of 10 mmol h-1 m-2 even for irradiation times up to 20 h. The introduction of Au NPs yielded a significant enhancement in photocatalytic activity, which decreased as a function of irradiation time. The main phenomena causing the Au-containing photocatalyst deactivation have been investigated by morphological and compositional analysis, providing important insights for the design of Mn3O4-based photocatalysts with improved performances.

17.
Inorg Chem ; 57(23): 14564-14573, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30407794

RESUMEN

Among transition metal oxides, MnO2 is of considerable importance for various technological end-uses, from heterogeneous catalysis to gas sensing, owing to its structural flexibility and unique properties at the nanoscale. In this work, we demonstrate the successful fabrication of supported MnO2 nanomaterials by a catalyst-free, plasma-assisted process starting from a fluorinated manganese(II) molecular source in Ar/O2 plasmas. A thorough multitechnique characterization aimed at the systematic investigation of material structure, chemical composition, and morphology revealed the formation of F-doped, oxygen-deficient, MnO2-based nanomaterials, with a fluorine content tunable as a function of growth temperature ( TG). Whereas phase-pure ß-MnO2 was obtained for 100 °C ≤ TG ≤ 300 °C, the formation of mixed phase MnO2 + Mn2O3 nanosystems took place at 400 °C. In addition, the system nano-organization could be finely tailored, resulting in a controllable evolution from wheat-ear columnar arrays to high aspect ratio pointed-tip nanorod assemblies. Concomitantly, magnetic force microscopy analyses suggested the formation of spin domains with features dependent on material morphology. Preliminary tests in Vis-light activated photocatalytic degradation of rhodamine B aqueous solutions pave the way to possible applications of the target materials in wastewater purification.

18.
Chem Rev ; 116(10): 5987-6041, 2016 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-27120134

RESUMEN

Cerium dioxide (CeO2, ceria) is becoming an ubiquitous constituent in catalytic systems for a variety of applications. 2016 sees the 40(th) anniversary since ceria was first employed by Ford Motor Company as an oxygen storage component in car converters, to become in the years since its inception an irreplaceable component in three-way catalysts (TWCs). Apart from this well-established use, ceria is looming as a catalyst component for a wide range of catalytic applications. For some of these, such as fuel cells, CeO2-based materials have almost reached the market stage, while for some other catalytic reactions, such as reforming processes, photocatalysis, water-gas shift reaction, thermochemical water splitting, and organic reactions, ceria is emerging as a unique material, holding great promise for future market breakthroughs. While much knowledge about the fundamental characteristics of CeO2-based materials has already been acquired, new characterization techniques and powerful theoretical methods are deepening our understanding of these materials, helping us to predict their behavior and application potential. This review has a wide view on all those aspects related to ceria which promise to produce an important impact on our life, encompassing fundamental knowledge of CeO2 and its properties, characterization toolbox, emerging features, theoretical studies, and all the catalytic applications, organized by their degree of establishment on the market.

19.
Langmuir ; 32(6): 1510-20, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26788810

RESUMEN

In this article, we report a systematic investigation of the role of (i) substrate temperature, (ii) oxygen partial pressure, and (iii) radio frequency (rf) power on the crystal structure and morphology of CuO nanostructured thin films prepared by means of rf-magnetron sputtering starting from a Cu metal target. On selected films, photocatalytic tests have been carried out in order to correlate the structural and morphological properties of the thin films prepared under different conditions with the photocatalytic properties and to find out the key parameters to optimize the CuO nanostructured films. All of the synthesized films were single-phase CuO nanorods of variable diameter between 80 and 200 nm. Better-aligned rods were obtained at relatively low substrate temperatures and from low to intermediate oxygen partial pressures, resulting in more efficient photocatalytic activities. Our investigation suggests a relevant role of the crystallographic orientation of the CuO tenorite film on the photocatalytic activity, as demonstrated by the significant improvement in H2 evolution for highly oriented films.

20.
Chemistry ; 21(36): 12769-77, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26179742

RESUMEN

The development of new electrocatalysts for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at physiological pH is critical for several fields, including fuel cells and biological applications. Herein, the assembly of an electrode based on carboxyl-functionalised hydrophilic multiwalled carbon nanotubes (MWCNTs) filled with Fe phases and their excellent performance as electrocatalysts for ORR and HER at physiological pH are reported. The encapsulated Fe dramatically enhances the catalytic activity, and the graphitic shells play a double role of efficiently mediating the electron transfer to O2 and H2 O reactants and providing a cocoon that prevents uncontrolled Fe oxidation or leaching.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA