Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Genet Genomics ; 294(2): 315-328, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30443676

RESUMEN

Development of grass-endophyte associations with minimal or no detrimental effects in combination with beneficial characteristics is important for pastoral agriculture. The feasibility of enhancing production of an endophyte-derived beneficial alkaloid through introduction of an additional gene copy was assessed in a proof-of-concept study. Sexual and asexual Epichloë species that form symbiotic associations with cool-season grasses of the Poaceae sub-family Pooideae produce bioactive alkaloids that confer resistance to herbivory by a number of organisms. Of these, peramine is thought to be crucial for protection of perennial ryegrass (Lolium perenne L.) from the Argentinian stem weevil, an economically important exotic pest in New Zealand, contributing significantly to pasture persistence. A single gene (perA) has been identified as solely responsible for peramine biosynthesis and is distributed widely across Epichloë taxa. In the present study, a functional copy of the perA gene was introduced into three recipient endophyte genomes by Agrobacterium tumefaciens-mediated transformation. The target strains included some that do not produce peramine, and others containing different perA gene copies. Mitotically stable transformants generated from all three endophyte strains were able to produce peramine in culture and in planta at variable levels. In summary, this study provides an insight into the potential for artificial combinations of alkaloid biosynthesis in a single endophyte strain through transgenesis, as well as the possibility of using novel genome editing techniques to edit the perA gene of non-peramine producing strains.


Asunto(s)
Endófitos/genética , Epichloe/genética , Compuestos Heterocíclicos con 2 Anillos/metabolismo , Poaceae/genética , Poliaminas/metabolismo , Alcaloides/genética , Animales , Resistencia a la Enfermedad/genética , Epichloe/crecimiento & desarrollo , Edición Génica , Control Biológico de Vectores , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Reproducción Asexuada/genética , Simbiosis/genética , Gorgojos/genética , Gorgojos/patogenicidad
2.
Plant Biotechnol J ; 16(4): 877-889, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28913899

RESUMEN

The application of genomics in crops has the ability to significantly improve genetic gain for agriculture. Many marker-dense tools have been developed, but few have seen broad adoption in plant genomics due to issues of significant variations of genome size, levels of ploidy, single nucleotide polymorphism (SNP) frequency and reproductive habit. When combined with limited breeding activities, small research communities and scant sequence resources, the suitability of popular systems is often suboptimal and routinely fails to effectively balance cost-effectiveness and sample throughput. Genotyping-by-sequencing (GBS) encompasses a range of protocols including resequencing of the transcriptome. This study describes a skim GBS-transcriptomics (GBS-t) approach developed to be broadly applicable, cost-effective and high-throughput while still assaying a significant number of SNP loci. A range of crop species with differing levels of ploidy and degree of inbreeding/outbreeding were chosen, including perennial ryegrass, a diploid outbreeding forage grass; phalaris, a putative segmental allotetraploid outbreeding forage grass; lentil, a diploid inbreeding grain legume; and canola, an allotetraploid partially outbreeding oilseed. GBS-t was validated as a simple and largely automated, cost-effective method which generates sufficient SNPs (from 89 738 to 231 977) with acceptable levels of missing data and even genome coverage from c. 3 million sequence reads per sample. GBS-t is therefore a broadly applicable system suitable for many crops, offering advantages over other systems. The correct choice of subsequent sequence analysis software is important, and the bioinformatics process should be iterative and tailored to the specific challenges posed by ploidy variation and extent of heterozygosity.


Asunto(s)
Productos Agrícolas/genética , Técnicas de Genotipaje/métodos , Ploidias , Polimorfismo de Nucleótido Simple , Brassica rapa/genética , Perfilación de la Expresión Génica , Genoma de Planta , Lolium/genética , Phalaris/genética , Reproducibilidad de los Resultados
3.
Theor Appl Genet ; 131(9): 1891-1902, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29860624

RESUMEN

KEY MESSAGE: Exploitation of data from a ryegrass breeding program has enabled rapid development and implementation of genomic selection for sward-based biomass yield with a twofold-to-threefold increase in genetic gain. Genomic selection, which uses genome-wide sequence polymorphism data and quantitative genetics techniques to predict plant performance, has large potential for the improvement in pasture plants. Major factors influencing the accuracy of genomic selection include the size of reference populations, trait heritability values and the genetic diversity of breeding populations. Global diversity of the important forage species perennial ryegrass is high and so would require a large reference population in order to achieve moderate accuracies of genomic selection. However, diversity of germplasm within a breeding program is likely to be lower. In addition, de novo construction and characterisation of reference populations are a logistically complex process. Consequently, historical phenotypic records for seasonal biomass yield and heading date over a 18-year period within a commercial perennial ryegrass breeding program have been accessed, and target populations have been characterised with a high-density transcriptome-based genotyping-by-sequencing assay. Ability to predict observed phenotypic performance in each successive year was assessed by using all synthetic populations from previous years as a reference population. Moderate and high accuracies were achieved for the two traits, respectively, consistent with broad-sense heritability values. The present study represents the first demonstration and validation of genomic selection for seasonal biomass yield within a diverse commercial breeding program across multiple years. These results, supported by previous simulation studies, demonstrate the ability to predict sward-based phenotypic performance early in the process of individual plant selection, so shortening the breeding cycle, increasing the rate of genetic gain and allowing rapid adoption in ryegrass improvement programs.


Asunto(s)
Lolium/genética , Fitomejoramiento , Selección Genética , Biomasa , Productos Agrícolas/genética , Variación Genética , Genética de Población , Genómica , Genotipo , Fenotipo
4.
Genome ; 60(12): 1086-1088, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28841400

RESUMEN

RNA-Seq methodology has been used to generate a comprehensive transcriptome sequence resource for perennial ryegrass, an important temperate pasture grass species. A total of 931 547 255 reads were obtained from libraries corresponding to 19 distinct tissue samples, including both vegetative and reproductive stages of development. Assembly of data generated a final filtered reference set of 48 713 contigs and scaffolds. The transcriptome resource will support whole genome sequence assembly, comparative genomics, implementation of genotyping-by-sequencing (GBS) methods based on transcript sampling, and identification of candidate genes for multiple biological functions.


Asunto(s)
Mapeo Contig/normas , Genoma de Planta , Lolium/genética , Transcriptoma , Mapeo Contig/métodos , Anotación de Secuencia Molecular , Valores de Referencia
5.
Genome ; 60(6): 496-509, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28177829

RESUMEN

Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.


Asunto(s)
Alcaloides/genética , Endófitos/genética , Epichloe/genética , Poaceae/genética , Secuencia de Bases , Variación Genética/genética , Genómica/métodos , Genotipo
6.
Theor Appl Genet ; 129(5): 991-1005, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26883039

RESUMEN

KEY MESSAGE: A targeted amplicon-based genotyping-by-sequencing approach has permitted cost-effective and accurate discrimination between ryegrass species (perennial, Italian and inter-species hybrid), and identification of cultivars based on bulked samples. Perennial ryegrass and Italian ryegrass are the most important temperate forage species for global agriculture, and are represented in the commercial pasture seed market by numerous cultivars each composed of multiple highly heterozygous individuals. Previous studies have identified difficulties in the use of morphophysiological criteria to discriminate between these two closely related taxa. Recently, a highly multiplexed single nucleotide polymorphism (SNP)-based genotyping assay has been developed that permits accurate differentiation between both species and cultivars of ryegrasses at the genetic level. This assay has since been further developed into an amplicon-based genotyping-by-sequencing (GBS) approach implemented on a second-generation sequencing platform, allowing accelerated throughput and ca. sixfold reduction in cost. Using the GBS approach, 63 cultivars of perennial, Italian and interspecific hybrid ryegrasses, as well as intergeneric Festulolium hybrids, were genotyped. The genetic relationships between cultivars were interpreted in terms of known breeding histories and indistinct species boundaries within the Lolium genus, as well as suitability of current cultivar registration methodologies. An example of applicability to quality assurance and control (QA/QC) of seed purity is also described. Rapid, low-cost genotypic assays provide new opportunities for breeders to more fully explore genetic diversity within breeding programs, allowing the combination of novel unique genetic backgrounds. Such tools also offer the potential to more accurately define cultivar identities, allowing protection of varieties in the commercial market and supporting processes of cultivar accreditation and quality assurance.


Asunto(s)
Técnicas de Genotipaje/métodos , Lolium/clasificación , Análisis de Secuencia de ADN/métodos , ADN de Plantas/genética , Biblioteca de Genes , Genotipo , Lolium/genética , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
7.
Int J Mol Sci ; 17(11)2016 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-27845747

RESUMEN

RNA-Seq using second-generation sequencing technologies permits generation of a reference unigene set for a given species, in the absence of a well-annotated genome sequence, supporting functional genomics studies, gene characterisation and detailed expression analysis for specific morphophysiological or environmental stress response traits. A reference unigene set for lentil has been developed, consisting of 58,986 contigs and scaffolds with an N50 length of 1719 bp. Comparison to gene complements from related species, reference protein databases, previously published lentil transcriptomes and a draft genome sequence validated the current dataset in terms of degree of completeness and utility. A large proportion (98%) of unigenes were expressed in more than one tissue, at varying levels. Candidate genes associated with mechanisms of tolerance to both boron toxicity and time of flowering were identified, which can eventually be used for the development of gene-based markers. This study has provided a comprehensive, assembled and annotated reference gene set for lentil that can be used for multiple applications, permitting identification of genes for pathway-specific expression analysis, genetic modification approaches, development of resources for genotypic analysis, and assistance in the annotation of a future lentil genome sequence.


Asunto(s)
Lens (Planta)/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas , Lens (Planta)/genética , Lens (Planta)/crecimiento & desarrollo , Anotación de Secuencia Molecular , Especificidad de Órganos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo , Valores de Referencia
8.
BMC Evol Biol ; 15: 72, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25902799

RESUMEN

BACKGROUND: Perennial ryegrass (Lolium perenne L.) is one of the most important species for temperate pastoral agriculture, forming associations with genetically diverse groups of mutualistic fungal endophytes. However, only two taxonomic groups (E. festucae var. lolii and LpTG-2) have so far been described. In addition to these two well-characterised taxa, a third distinct group of previously unclassified perennial ryegrass-associated endophytes was identified as belonging to a putative novel taxon (or taxa) (PNT) in a previous analysis based on simple sequence repeat (SSR) marker diversity. As well as genotypic differences, distinctive alkaloid production profiles were observed for members of the PNT group. RESULTS: A detailed phylogenetic analysis of perennial ryegrass-associated endophytes using components of whole genome sequence data was performed using complete sequences of 7 nuclear protein-encoding genes. Three independently selected genes (encoding a DEAD/DEAH box helicase [Sbp4], a glycosyl hydrolase [family 92 protein] and a MEAB protein), none of which have been previously used for taxonomic studies of endophytes, were selected together with the frequently used 'house-keeping' genes tefA and tubB (encoding translation elongation factor 1-α and ß-tubulin, respectively). In addition, an endophyte-specific gene (perA for peramine biosynthesis) and the fungal-specific MT genes for mating-type control were included. The results supported previous phylogenomic inferences for the known species, but revealed distinctive patterns of diversity for the previously unclassified endophyte strains, which were further proposed to belong to not one but two distinct novel taxa. Potential progenitor genomes for the asexual endophytes among contemporary teleomorphic (sexual Epichloë) species were also identified from the phylogenetic analysis. CONCLUSIONS: Unique taxonomic status for the PNT was confirmed through comparison of multiple nuclear gene sequences, and also supported by evidence from chemotypic diversity. Analysis of MT gene idiomorphs further supported a predicted independent origin of two distinct perennial ryegrass-associated novel taxa, designated LpTG-3 and LpTG-4, from different members of a similar founder population related to contemporary E. festucae. The analysis also provided higher resolution to the known progenitor contributions of previously characterised perennial ryegrass-associated endophyte taxa.


Asunto(s)
Epichloe/genética , Lolium/microbiología , Filogenia , Endófitos/clasificación , Endófitos/genética , Endófitos/fisiología , Epichloe/clasificación , Epichloe/fisiología , Proteínas Fúngicas/genética , Genes del Tipo Sexual de los Hongos , Compuestos Heterocíclicos con 2 Anillos , Lolium/fisiología , Factor 1 de Elongación Peptídica/genética , Poliaminas , Simbiosis , Tubulina (Proteína)/genética
9.
BMC Genomics ; 16: 611, 2015 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-26275991

RESUMEN

BACKGROUND: Field pea (Pisum sativum L.) is a cool-season grain legume that is cultivated world-wide for both human consumption and stock-feed purposes. Enhancement of genetic and genomic resources for field pea will permit improved understanding of the control of traits relevant to crop productivity and quality. Advances in second-generation sequencing and associated bioinformatics analysis now provide unprecedented opportunities for the development of such resources. The objective of this study was to perform transcriptome sequencing and characterisation from two genotypes of field pea that differ in terms of seed and plant morphological characteristics. RESULTS: Transcriptome sequencing was performed with RNA templates from multiple tissues of the field pea genotypes Kaspa and Parafield. Tissue samples were collected at various growth stages, and a total of 23 cDNA libraries were sequenced using Illumina high-throughput sequencing platforms. A total of 407 and 352 million paired-end reads from the Kaspa and Parafield transcriptomes, respectively were assembled into 129,282 and 149,272 contigs, which were filtered on the basis of known gene annotations, presence of open reading frames (ORFs), reciprocal matches and degree of coverage. Totals of 126,335 contigs from Kaspa and 145,730 from Parafield were subsequently selected as the reference set. Reciprocal sequence analysis revealed that c. 87% of contigs were expressed in both cultivars, while a small proportion were unique to each genotype. Reads from different libraries were aligned to the genotype-specific assemblies in order to identify and characterise expression of contigs on a tissue-specific basis, of which 87% were expressed in more than one tissue, while others showed distinct expression patterns in specific tissues, providing unique transcriptome signatures. CONCLUSION: This study provided a comprehensive assembled and annotated transcriptome set for field pea that can be used for development of genetic markers, in order to assess genetic diversity, construct linkage maps, perform trait-dissection and implement whole-genome selection strategies in varietal improvement programs, as well to identify target genes for genetic modification approaches on the basis of annotation and expression analysis. In addition, the reference field pea transcriptome will prove highly valuable for comparative genomics studies and construction of a finalised genome sequence.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Pisum sativum/genética , ARN de Planta/análisis , Análisis de Secuencia de ARN/métodos , Bases de Datos de Ácidos Nucleicos , Genotipo , Datos de Secuencia Molecular , Especificidad de Órganos , Pisum sativum/fisiología
10.
BMC Biotechnol ; 15: 25, 2015 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-25887558

RESUMEN

BACKGROUND: Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine. RESULTS: A semi-random enzymatic DNA amplicon fragmentation method was developed based on the unique cleavage properties of MspJI. In this method, random incorporation of 5-methyl-2'-deoxycytidine-5'-triphosphate is achieved through DNA amplification with DNA polymerase, followed by DNA digestion with MspJI. Due to the recognition sequence of the enzyme, DNA amplicons are fragmented in a relatively sequence-independent manner. The size range of the resulting fragments was capable of control through optimisation of 5-methyl-2'-deoxycytidine-5'-triphosphate concentration in the reaction mixture. A library suitable for sequencing using the Illumina MiSeq platform was prepared and processed using the proposed method. Alignment of generated short reads to a reference sequence demonstrated a relatively high level of random fragmentation. CONCLUSIONS: The proposed method may be performed with standard laboratory equipment. Although the uniformity of coverage was slightly inferior to the Covaris physical shearing procedure, due to efficiencies of cost and labour, the method may be more suitable than existing approaches for implementation in large-scale sequencing activities, such as bacterial artificial chromosome (BAC)-based genome sequence assembly, pan-genomic studies and locus-targeted genotyping-by-sequencing.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enzimas de Restricción del ADN/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Agrobacterium/genética , Arabidopsis/genética , ADN Bacteriano/análisis , ADN Bacteriano/genética , ADN de Plantas/análisis , ADN de Plantas/genética , Nucleótidos de Desoxicitosina , Técnicas de Genotipaje , Técnicas de Amplificación de Ácido Nucleico
11.
Theor Appl Genet ; 127(3): 703-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24370962

RESUMEN

Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic 'orphan' crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab × ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2 years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.


Asunto(s)
Boro/toxicidad , Etiquetas de Secuencia Expresada , Genes de Plantas , Lens (Planta)/genética , Polimorfismo de Nucleótido Simple , Selección Genética , Mapeo Cromosómico , ADN de Plantas/genética , Ligamiento Genético , Genómica , Medicago truncatula/genética , Repeticiones de Microsatélite , Sitios de Carácter Cuantitativo , Transcriptoma
12.
Theor Appl Genet ; 127(4): 809-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24374468

RESUMEN

KEY MESSAGE: Best linear unbiased prediction (BLUP), which uses pedigree to estimate breeding values, can result in increased genetic gains for low heritability traits in autotetraploid potato. Conventional potato breeding strategies, based on outcrossing followed by phenotypic recurrent selection over a number of generations, can result in slow but steady improvements of traits with moderate to high heritability. However, faster gains, particularly for low heritability traits, could be made by selection on estimated breeding values (EBVs) calculated using more complete pedigree information in best linear unbiased prediction (BLUP) analysis. One complication in applying BLUP predictions of breeding value to potato breeding programs is the autotetraploid inheritance pattern of this species. Here we have used a large pedigree, dating back to 1908, to estimate heritability for nine key traits for potato breeding, modelling autotetraploid inheritance. We estimate the proportion of double reduction in potatoes from our data, and across traits, to be in the order of 10 %. Estimates of heritability ranged from 0.21 for breeder's visual preference, 0.58 for tuber yield, to 0.83 for plant maturity. Using the accuracies of the EBVs determined by cross generational validation, we model the genetic gain that could be achieved by selection of genotypes for breeding on BLUP EBVs and demonstrate that gains can be greater than in conventional schemes.


Asunto(s)
Patrón de Herencia/genética , Carácter Cuantitativo Heredable , Solanum tuberosum/genética , Cruzamiento , Genotipo , Funciones de Verosimilitud , Fenotipo , Poliploidía , Selección Genética , Gravedad Específica
13.
Theor Appl Genet ; 127(11): 2279-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25186170

RESUMEN

KEY MESSAGE: Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.


Asunto(s)
Cruzamiento , Marcadores Genéticos , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Mapeo Cromosómico , Variación Genética , Genoma de Planta , Heterocigoto , Patrón de Herencia , Fenotipo , Selección Genética , Tetraploidía
14.
BMC Genet ; 15: 150, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25540077

RESUMEN

BACKGROUND: Lentil is a self-pollinated annual diploid (2n = 2× = 14) crop with a restricted history of genetic improvement through breeding, particularly when compared to cereal crops. This limited breeding has probably contributed to the narrow genetic base of local cultivars, and a corresponding potential to continue yield increases and stability. Therefore, knowledge of genetic variation and relationships between populations is important for understanding of available genetic variability and its potential for use in breeding programs. Single nucleotide polymorphism (SNP) markers provide a method for rapid automated genotyping and subsequent data analysis over large numbers of samples, allowing assessment of genetic relationships between genotypes. RESULTS: In order to investigate levels of genetic diversity within lentil germplasm, 505 cultivars and landraces were genotyped with 384 genome-wide distributed SNP markers, of which 266 (69.2%) obtained successful amplification and detected polymorphisms. Gene diversity and PIC values varied between 0.108-0.5 and 0.102-0.375, with averages of 0.419 and 0.328, respectively. On the basis of clarity and interest to lentil breeders, the genetic structure of the germplasm collection was analysed separately for cultivars and landraces. A neighbour-joining (NJ) dendrogram was constructed for commercial cultivars, in which lentil cultivars were sorted into three major groups (G-I, G-II and G-III). These results were further supported by principal coordinate analysis (PCoA) and STRUCTURE, from which three clear clusters were defined based on differences in geographical location. In the case of landraces, a weak correlation between geographical origin and genetic relationships was observed. The landraces from the Mediterranean region, predominantly Greece and Turkey, revealed very high levels of genetic diversity. CONCLUSIONS: Lentil cultivars revealed clear clustering based on geographical origin, but much more limited correlation between geographic origin and genetic diversity was observed for landraces. These results suggest that selection of divergent parental genotypes for breeding should be made actively on the basis of systematic assessment of genetic distance between genotypes, rather than passively based on geographical distance.


Asunto(s)
Genes de Plantas , Lens (Planta)/genética , Polimorfismo de Nucleótido Simple , Análisis por Conglomerados , Marcadores Genéticos , Filogenia
15.
BMC Evol Biol ; 13: 270, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24330497

RESUMEN

BACKGROUND: Tall fescue and meadow fescue are important as temperate pasture grasses, forming mutualistic associations with asexual Neotyphodium endophytes. The most frequently identified endophyte of Continental allohexaploid tall fescue is Neotyphodium coenophialum, while representatives of two other taxa (FaTG-2 and FaTG-3) have been described as colonising decaploid and Mediterranean hexaploid tall fescue, respectively. In addition, a recent study identified two other putatively novel endophyte taxa from Mediterranean hexaploid and decaploid tall fescue accessions, which were designated as uncharacterised Neotyphodium species (UNS) and FaTG-3-like respectively. In contrast, diploid meadow fescue mainly forms associations with the endophyte taxon Neotyphodium uncinatum, although a second endophyte taxon, termed N. siegelii, has also been described. RESULTS: Multiple copies of the translation elongation factor 1-a (tefA) and ß-tubulin (tub2) 'house-keeping' genes, as well as the endophyte-specific perA gene, were identified for each fescue-derived endophyte taxon from whole genome sequence data. The assembled gene sequences were used to reconstruct evolutionary relationships between the heteroploid fescue-derived endophytes and putative ancestral sub-genomes derived from known sexual Epichloë species. In addition to the nuclear genome-derived genes, the complete mitochondrial genome (mt genome) sequence was obtained for each of the sequenced endophyte, and phylogenetic relationships between the mt genome protein coding gene complements were also reconstructed. CONCLUSIONS: Complex and highly reticulated evolutionary relationships between Epichloë-Neotyphodium endophytes have been predicted on the basis of multiple nuclear genes and entire mitochondrial protein-coding gene complements, derived from independent assembly of whole genome sequence reads. The results are consistent with previous studies while also providing novel phylogenetic insights, particularly through inclusion of data from the endophyte lineage-specific gene, as well as affording evidence for the origin of cytoplasmic genomes. In particular, the results obtained from the present study imply the possible occurrence of at least two distinct E. typhina progenitors for heteropoid taxa, as well the ancestral contribution of an endophyte species distinct from (although related to) contemporary E. baconii to the extant hybrid species. Furthermore, the present study confirmed the distinct taxonomic status of the newly identified fescue endophyte taxa, FaTG-3-like and UNS, which are consequently proposed to be renamed FaTG4 and FaTG5, respectively.


Asunto(s)
Evolución Biológica , Epichloe/aislamiento & purificación , Festuca/microbiología , Neotyphodium/aislamiento & purificación , Núcleo Celular/genética , Endófitos/fisiología , Epichloe/clasificación , Epichloe/genética , Epichloe/fisiología , Festuca/clasificación , Festuca/genética , Festuca/fisiología , Genes Mitocondriales , Neotyphodium/clasificación , Neotyphodium/genética , Neotyphodium/fisiología , Filogenia , Tubulina (Proteína)/genética
16.
BMC Plant Biol ; 13: 161, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24134188

RESUMEN

BACKGROUND: Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. RESULTS: In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance. CONCLUSION: The SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars.


Asunto(s)
Mapeo Cromosómico/métodos , Pisum sativum/genética , Pisum sativum/fisiología , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Salinidad , Tolerancia a la Sal/genética , Cruzamientos Genéticos , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta/genética , Técnicas de Genotipaje , Recombinación Genética/genética , Reproducibilidad de los Resultados , Sintenía/genética
17.
BMC Genomics ; 13: 219, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672128

RESUMEN

BACKGROUND: Single nucleotide polymorphisms (SNPs) provide essential tools for the advancement of research in plant genomics, and the development of SNP resources for many species has been accelerated by the capabilities of second-generation sequencing technologies. The current study aimed to develop and use a novel bioinformatic pipeline to generate a comprehensive collection of SNP markers within the agriculturally important pasture grass tall fescue; an outbreeding allopolyploid species displaying three distinct morphotypes: Continental, Mediterranean and rhizomatous. RESULTS: A bioinformatic pipeline was developed that successfully identified SNPs within genotypes from distinct tall fescue morphotypes, following the sequencing of 414 polymerase chain reaction (PCR) - generated amplicons using 454 GS FLX technology. Equivalent amplicon sets were derived from representative genotypes of each morphotype, including six Continental, five Mediterranean and one rhizomatous. A total of 8,584 and 2,292 SNPs were identified with high confidence within the Continental and Mediterranean morphotypes respectively. The success of the bioinformatic approach was demonstrated through validation (at a rate of 70%) of a subset of 141 SNPs using both SNaPshot™ and GoldenGate™ assay chemistries. Furthermore, the quantitative genotyping capability of the GoldenGate™ assay revealed that approximately 30% of the putative SNPs were accessible to co-dominant scoring, despite the hexaploid genome structure. The sub-genome-specific origin of each SNP validated from Continental tall fescue was predicted using a phylogenetic approach based on comparison with orthologous sequences from predicted progenitor species. CONCLUSIONS: Using the appropriate bioinformatic approach, amplicon resequencing based on 454 GS FLX technology is an effective method for the identification of polymorphic SNPs within the genomes of Continental and Mediterranean tall fescue. The GoldenGate™ assay is capable of high-throughput co-dominant SNP allele detection, and minimises the problems associated with SNP genotyping in a polyploid by effectively reducing the complexity to a diploid system. This SNP collection may now be refined and used in applications such as cultivar identification, genetic linkage map construction, genome-wide association studies and genomic selection in tall fescue. The bioinformatic pipeline described here represents an effective general method for SNP discovery within outbreeding allopolyploid species.


Asunto(s)
Festuca/genética , Genoma de Planta , Polimorfismo de Nucleótido Simple , Biología Computacional , Mapeo Contig , Etiquetas de Secuencia Expresada , Genotipo , Análisis de Secuencia de ADN
18.
BMC Genomics ; 13: 104, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22433453

RESUMEN

BACKGROUND: Field pea (Pisum sativum L.) and faba bean (Vicia faba L.) are cool-season grain legume species that provide rich sources of food for humans and fodder for livestock. To date, both species have been relative 'genomic orphans' due to limited availability of genetic and genomic information. A significant enrichment of genomic resources is consequently required in order to understand the genetic architecture of important agronomic traits, and to support germplasm enhancement, genetic diversity, population structure and demographic studies. RESULTS: cDNA samples obtained from various tissue types of specific field pea and faba bean genotypes were sequenced using 454 Roche GS FLX Titanium technology. A total of 720,324 and 304,680 reads for field pea and faba bean, respectively, were de novo assembled to generate sets of 70,682 and 60,440 unigenes. Consensus sequences were compared against the genome of the model legume species Medicago truncatula Gaertn., as well as that of the more distantly related, but better-characterised genome of Arabidopsis thaliana L.. In comparison to M. truncatula coding sequences, 11,737 and 10,179 unique hits were obtained from field pea and faba bean. Totals of 22,057 field pea and 18,052 faba bean unigenes were subsequently annotated from GenBank. Comparison to the genome of soybean (Glycine max L.) resulted in 19,451 unique hits for field pea and 16,497 unique hits for faba bean, corresponding to c. 35% and 30% of the known gene space, respectively. Simple sequence repeat (SSR)-containing expressed sequence tags (ESTs) were identified from consensus sequences, and totals of 2,397 and 802 primer pairs were designed for field pea and faba bean. Subsets of 96 EST-SSR markers were screened for validation across modest panels of field pea and faba bean cultivars, as well as related non-domesticated species. For field pea, 86 primer pairs successfully obtained amplification products from one or more template genotypes, of which 59% revealed polymorphism between 6 genotypes. In the case of faba bean, 81 primer pairs displayed successful amplification, of which 48% detected polymorphism. CONCLUSIONS: The generation of EST datasets for field pea and faba bean has permitted effective unigene identification and functional sequence annotation. EST-SSR loci were detected at incidences of 14-17%, permitting design of comprehensive sets of primer pairs. The subsets from these primer pairs proved highly useful for polymorphism detection within Pisum and Vicia germplasm.


Asunto(s)
Perfilación de la Expresión Génica , Repeticiones de Microsatélite/genética , Pisum sativum/genética , Vicia faba/genética , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Etiquetas de Secuencia Expresada/metabolismo , Marcadores Genéticos/genética , Genotipo , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
19.
Plant Biotechnol J ; 10(2): 125-38, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21831136

RESUMEN

An understanding of nature and extent of nucleotide sequence variation is required for programmes of discovery and characterization of single nucleotide polymorphisms (SNPs), which provide the most versatile class of molecular genetic marker. A majority of higher plant species are polyploids, and allopolyploidy, because of hybrid formation between closely related taxa, is very common. Mutational variation may arise both between allelic (homologous) sequences within individual subgenomes and between homoeologous sequences among subgenomes, in addition to paralogous variation between duplicated gene copies. Successful SNP validation in allopolyploids depends on differentiation of the sequence variation classes. A number of biological factors influence the feasibility of discrimination, including degree of gene family complexity, inbreeding or outbreeding reproductive habit, and the level of knowledge concerning progenitor diploid species. In addition, developments in high-throughput DNA sequencing and associated computational analysis provide general solutions for the genetic analysis of allopolyploids. These issues are explored in the context of experience from a range of allopolyploid species, representing grain (wheat and canola), forage (pasture legumes and grasses), and horticultural (strawberry) crop. Following SNP discovery, detection in routine genotyping applications also presents challenges for allopolyploids. Strategies based on either design of subgenome-specific SNP assays through homoeolocus-targeted polymerase chain reaction (PCR) amplification, or detection of incremental changes in nucleotide variant dosage, are described.


Asunto(s)
Productos Agrícolas/genética , Poliploidía , Secuencia de Bases , Fabaceae/genética , Fragaria/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Poaceae/genética , Polimorfismo de Nucleótido Simple , Triticum/genética
20.
Theor Appl Genet ; 124(6): 1127-37, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22222441

RESUMEN

Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar improvement programs.


Asunto(s)
Festuca/genética , Variación Genética , ADN de Plantas/genética , ADN Ribosómico/genética , Sitios Genéticos , Marcadores Genéticos , Filogeografía , Poliploidía , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA