Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(34): e2322938121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141351

RESUMEN

The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the ß clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.


Asunto(s)
Replicación del ADN , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mutación
2.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422159

RESUMEN

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Deshidrogenasa , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
3.
Brain ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442687

RESUMEN

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a global health burden. While Mtb is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that leads to differential disease across organs. Attention has focused on differences in T cell responses in the control of Mtb in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood brain barrier, here we characterized the antibody profiles across the blood and brain compartments during TBM, and determined whether Mtb-specific humoral immune responses differed between Mtb infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different Mtb antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n=10) vs TBM (n=60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4), the capacity of Mtb-specific antibodies to bind to Fc receptors or C1q, and to activate innate immune effectors functions (complement and NK cells activation, monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against Mtb, characterized by an enrichment of Mtb-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited Mtb-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared to individuals with pulmonary TB, despite having lower IgG titers and Fcγ receptors (FcγR)-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs vs brain), and demonstrate a highly compartmentalized Mtb-specific antibody response within the CSF during TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.

4.
J Infect Dis ; 230(2): e457-e464, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38709726

RESUMEN

Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.


Asunto(s)
Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Tuberculosis/prevención & control , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Desarrollo de Vacunas , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Mycobacterium tuberculosis/inmunología , Animales
5.
Infect Immun ; 92(4): e0053523, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38514467

RESUMEN

Concomitant immunity is generally defined as an ongoing infection providing protection against reinfection . Its role in prevention of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is supported by epidemiological evidence in humans as well as experimental evidence in mice and non-human primates (NHPs). Whether the presence of live Mtb, rather than simply persistent antigen, is necessary for concomitant immunity in TB is still unclear. Here, we investigated whether live Mtb plays a measurable role in control of secondary Mtb infection. Using cynomolgus macaques, molecularly barcoded Mtb libraries, positron emission tomography-computed tomography (PET CT) imaging, flow cytometry, and cytokine profiling, we evaluated the effect of antibiotic treatment after primary infection on immunological response and bacterial establishment, dissemination, and burden post-secondary infection. Our data provide evidence that, in this experimental model, treatment with antibiotics after primary infection reduced inflammation in the lung but was not associated with a significant change in bacterial establishment, dissemination, or burden in the lung or lymph nodes. Nonetheless, treatment of the prior infection with antibiotics did result in a modest reduction in protection against reinfection: none of the seven antibiotic-treated animals demonstrated sterilizing immunity against reinfection, while four of the seven non-treated macaques were completely protected against reinfection. These findings support that antibiotic-treated animals were still able to restrict bacterial establishment and dissemination after rechallenge compared to naïve macaques, but not to the full extent of non-antibiotic-treated macaques.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Humanos , Ratones , Reinfección , Tuberculosis/tratamiento farmacológico , Macaca fascicularis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
6.
Biol Lett ; 20(1): 20230479, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38290551

RESUMEN

The sensory mechanisms used by baleen whales (Mysticeti) for locating ephemeral, dense prey patches in vast marine habitats are poorly understood. Baleen whales have a functional olfactory system with paired rather than single blowholes (nares), potentially enabling stereo-olfaction. Dimethyl sulfide (DMS) is an odorous gas emitted by phytoplankton in response to grazing by zooplankton. Some seabirds use DMS to locate prey, but this ability has not been demonstrated in whales. For 14 extant species of baleen whale, nares morphometrics (imagery from unoccupied aerial systems, UAS) was related to published trophic level indices using Bayesian phylogenetic mixed modelling. A significant negative relationship was found between nares width and whale trophic level (ß = -0.08, lower 95% CI = -0.13, upper 95% CI = -0.03), corresponding with a 39% increase in nares width from highest to lowest trophic level. Thus, species with nasal morphology best suited to stereo-olfaction are more zooplanktivorous. These findings provide evidence that some baleen whale species may be able to localize odorants e.g. DMS. Our results help direct future behavioural trials of olfaction in baleen whales, by highlighting the most appropriate species to study. This is a research priority, given the potential for DMS-mediated plastic ingestion by whales.


Asunto(s)
Olfato , Ballenas , Animales , Filogenia , Teorema de Bayes , Ecosistema
8.
bioRxiv ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38187678

RESUMEN

Concomitant immunity is generally defined as an ongoing infection providing protection against reinfection1. Its role in prevention of tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is supported by epidemiological evidence in humans as well as experimental evidence in mice and non-human primates (NHPs). Whether the presence of live Mtb, rather than simply persistent antigen, is necessary for concomitant immunity in TB is still unclear. Here, we investigated whether live Mtb plays a measurable role in control of secondary Mtb infection. Using cynomolgus macaques, molecularly barcoded Mtb libraries, PET-CT imaging, flow cytometry and cytokine profiling we evaluated the effect of antibiotic treatment after primary infection on immunological response and bacterial establishment, dissemination, and burden post-secondary infection. Our data provide evidence that, in this experimental model, treatment with antibiotics after primary infection reduced inflammation in the lung but was not associated with a significant change in bacterial establishment, dissemination or burden in the lung or lymph nodes. Nonetheless, treatment of the prior infection with antibiotics did result in a modest reduction in protection against reinfection: none of the 7 antibiotic treated animals demonstrated sterilizing immunity against reinfection while 4 of the 7 non-treated macaques were completely protected against reinfection. These findings support that antibiotic-treated animals were still able to restrict bacterial establishment and dissemination after rechallenge compared to naïve macaques, but not to the full extent of non-antibiotic treated macaques.

9.
PLoS One ; 19(5): e0302758, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748652

RESUMEN

Measuring breathing rates is a means by which oxygen intake and metabolic rates can be estimated to determine food requirements and energy expenditure of killer whales (Orcinus orca) and other cetaceans. This relatively simple measure also allows the energetic consequences of environmental stressors to cetaceans to be understood but requires knowing respiration rates while they are engaged in different behaviours such as resting, travelling and foraging. We calculated respiration rates for different behavioural states of southern and northern resident killer whales using video from UAV drones and concurrent biologging data from animal-borne tags. Behavioural states of dive tracks were predicted using hierarchical hidden Markov models (HHMM) parameterized with time-depth data and with labeled tracks of drone-identified behavioural states (from drone footage that overlapped with the time-depth data). Dive tracks were sequences of dives and surface intervals lasting ≥ 10 minutes cumulative duration. We calculated respiration rates and estimated oxygen consumption rates for the predicted behavioural states of the tracks. We found that juvenile killer whales breathed at a higher rate when travelling (1.6 breaths min-1) compared to resting (1.2) and foraging (1.5)-and that adult males breathed at a higher rate when travelling (1.8) compared to both foraging (1.7) and resting (1.3). The juveniles in our study were estimated to consume 2.5-18.3 L O2 min-1 compared with 14.3-59.8 L O2 min-1 for adult males across all behaviours based on estimates of mass-specific tidal volume and oxygen extraction. Our findings confirm that killer whales take single breaths between dives and indicate that energy expenditure derived from respirations requires using sex, age, and behavioural-specific respiration rates. These findings can be applied to bioenergetics models on a behavioural-specific basis, and contribute towards obtaining better predictions of dive behaviours, energy expenditure and the food requirements of apex predators.


Asunto(s)
Buceo , Consumo de Oxígeno , Frecuencia Respiratoria , Orca , Animales , Orca/fisiología , Orca/metabolismo , Masculino , Frecuencia Respiratoria/fisiología , Femenino , Consumo de Oxígeno/fisiología , Buceo/fisiología , Metabolismo Energético/fisiología , Respiración , Conducta Alimentaria/fisiología
10.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600064

RESUMEN

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Asunto(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano/genética , Operón/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulación Bacteriana de la Expresión Génica
11.
Nat Microbiol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174703

RESUMEN

Mounting evidence indicates that antibodies can contribute towards control of tuberculosis (TB). However, the underlying mechanisms of humoral immune protection and whether antibodies can be exploited in therapeutic strategies to combat TB are relatively understudied. Here we engineered the receptor-binding Fc (fragment crystallizable) region of an antibody recognizing the Mycobacterium tuberculosis (Mtb) capsule, to define antibody Fc-mediated mechanism(s) of Mtb restriction. We generated 52 Fc variants that either promote or inhibit specific antibody effector functions, rationally building antibodies with enhanced capacity to promote Mtb restriction in a human whole-blood model of infection. While there is likely no singular Fc profile that universally drives control of Mtb, here we found that several Fc-engineered antibodies drove Mtb restriction in a neutrophil-dependent manner. Single-cell RNA sequencing analysis showed that a restrictive Fc-engineered antibody promoted neutrophil survival and expression of cell-intrinsic antimicrobial programs. These data show the potential of Fc-engineered antibodies as therapeutics able to harness the protective functions of neutrophils to promote control of TB.

12.
Nat Microbiol ; 9(6): 1513-1525, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658786

RESUMEN

Antibody features vary with tuberculosis (TB) disease state. Whether clinical variables, such as age or sex, influence associations between Mycobacterium tuberculosis-specific antibody responses and disease state is not well explored. Here we profiled Mycobacterium tuberculosis-specific antibody responses in 140 TB-exposed South African individuals from the Adolescent Cohort Study. We identified distinct response features in individuals progressing to active TB from non-progressing, matched controls. A multivariate antibody score differentially associated with progression (SeroScore) identified progressors up to 2 years before TB diagnosis, earlier than that achieved with the RISK6 transcriptional signature of progression. We validated these antibody response features in the Grand Challenges 6-74 cohort. Both the SeroScore and RISK6 correlated better with risk of TB progression in adolescents compared with adults, and in males compared with females. This suggests that age and sex are important, underappreciated modifiers of antibody responses associated with TB progression.


Asunto(s)
Anticuerpos Antibacterianos , Progresión de la Enfermedad , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/inmunología , Masculino , Femenino , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Adolescente , Tuberculosis/inmunología , Tuberculosis/microbiología , Factores Sexuales , Adulto , Factores de Edad , Sudáfrica/epidemiología , Adulto Joven , Estudios de Cohortes , Formación de Anticuerpos/inmunología
13.
Lancet Microbe ; 5(6): e570-e580, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734030

RESUMEN

BACKGROUND: Bacterial diversity could contribute to the diversity of tuberculosis infection and treatment outcomes observed clinically, but the biological basis of this association is poorly understood. The aim of this study was to identify associations between phenogenomic variation in Mycobacterium tuberculosis and tuberculosis clinical features. METHODS: We developed a high-throughput platform to define phenotype-genotype relationships in M tuberculosis clinical isolates, which we tested on a set of 158 drug-sensitive M tuberculosis strains sampled from a large tuberculosis clinical study in Ho Chi Minh City, Viet Nam. We tagged the strains with unique genetic barcodes in multiplicate, allowing us to pool the strains for in-vitro competitive fitness assays across 16 host-relevant antibiotic and metabolic conditions. Relative fitness was quantified by deep sequencing, enumerating output barcode read counts relative to input normalised values. We performed a genome-wide association study to identify phylogenetically linked and monogenic mutations associated with the in-vitro fitness phenotypes. These genetic determinants were further associated with relevant clinical outcomes (cavitary disease and treatment failure) by calculating odds ratios (ORs) with binomial logistic regressions. We also assessed the population-level transmission of strains associated with cavitary disease and treatment failure using terminal branch length analysis of the phylogenetic data. FINDINGS: M tuberculosis clinical strains had diverse growth characteristics in host-like metabolic and drug conditions. These fitness phenotypes were highly heritable, and we identified monogenic and phylogenetically linked variants associated with the fitness phenotypes. These data enabled us to define two genetic features that were associated with clinical outcomes. First, mutations in Rv1339, a phosphodiesterase, which were associated with slow growth in glycerol, were further associated with treatment failure (OR 5·34, 95% CI 1·21-23·58, p=0·027). Second, we identified a phenotypically distinct slow-growing subclade of lineage 1 strains (L1.1.1.1) that was associated with cavitary disease (OR 2·49, 1·11-5·59, p=0·027) and treatment failure (OR 4·76, 1·53-14·78, p=0·0069), and which had shorter terminal branch lengths on the phylogenetic tree, suggesting increased transmission. INTERPRETATION: Slow growth under various antibiotic and metabolic conditions served as in-vitro intermediate phenotypes underlying the association between M tuberculosis monogenic and phylogenetically linked mutations and outcomes such as cavitary disease, treatment failure, and transmission potential. These data suggest that M tuberculosis growth regulation is an adaptive advantage for bacterial success in human populations, at least in some circumstances. These data further suggest markers for the underlying bacterial processes that contribute to these clinical outcomes. FUNDING: National Health and Medical Research Council/A∗STAR, National Institutes of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the Wellcome Trust Fellowship in Public Health and Tropical Medicine.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Vietnam/epidemiología , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Estudio de Asociación del Genoma Completo , Resultado del Tratamiento , Fenotipo , Filogenia , Mutación , Fenómica , Genotipo , Femenino , Adulto , Masculino
14.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798646

RESUMEN

Tuberculosis (TB) is a major cause of morbidity and mortality worldwide despite widespread intradermal (ID) BCG vaccination in newborns. We previously demonstrated that changing the route and dose of BCG vaccination from 5×105 CFU ID to 5×107 CFU intravenous (IV) resulted in prevention of infection and disease in a rigorous, highly susceptible non-human primate model of TB. Identifying the immune mechanisms of protection for IV BCG will facilitate development of more effective vaccines against TB. Here, we depleted select lymphocyte subsets in IV BCG vaccinated macaques prior to Mtb challenge to determine the cell types necessary for that protection. Depletion of CD4 T cells or all CD8α expressing lymphoycytes (both innate and adaptive) resulted in loss of protection in most macaques, concomitant with increased bacterial burdens (~4-5 log10 thoracic CFU) and dissemination of infection. In contrast, depletion of only adaptive CD8αß+ T cells did not significantly reduce protection against disease. Our results demonstrate that CD4 T cells and innate CD8α+ lymphocytes are critical for IV BCG-induced protection, supporting investigation of how eliciting these cells and their functions can improve future TB vaccines.

15.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187598

RESUMEN

Immunological priming - either in the context of prior infection or vaccination - elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Here, using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior Mtb infection elicits a long-lasting protective response against subsequent Mtb exposure and that the depletion of CD4+ T cells prior to Mtb rechallenge significantly abrogates this protection. Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from primary infection, reinfection, and reinfection-CD4+ T cell depleted granulomas, we identify differential cellular and microbial features of control. The data collectively demonstrate that the presence of CD4+ T cells in the setting of reinfection results in a reduced inflammatory lung milieu characterized by reprogrammed CD8+ T cell activity, reduced neutrophilia, and blunted type-1 immune signaling among myeloid cells, mitigating Mtb disease severity. These results open avenues for developing vaccines and therapeutics that not only target CD4+ and CD8+ T cells, but also modulate innate immune cells to limit Mtb disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA