Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Structure ; 30(6): 793-802.e5, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35395178

RESUMEN

DNMT1 maintains the parental DNA methylation pattern on newly replicated hemimethylated DNA. The failure of this maintenance process causes aberrant DNA methylation that affects transcription and contributes to the development and progression of cancers such as acute myeloid leukemia. Here, we structurally characterized a set of newly discovered DNMT1-selective, reversible, non-nucleoside inhibitors that bear a core 3,5-dicyanopyridine moiety, as exemplified by GSK3735967, to better understand their mechanism of inhibition. All of the dicyanopydridine-containing inhibitors examined intercalate into the hemimethylated DNA between two CpG base pairs through the DNA minor groove, resulting in conformational movement of the DNMT1 active-site loop. In addition, GSK3735967 introduces two new binding sites, where it interacts with and stabilizes the displaced DNMT1 active-site loop and it occupies an open aromatic cage in which trimethylated histone H4 lysine 20 is expected to bind. Our work represents a substantial step in generating potent, selective, and non-nucleoside inhibitors of DNMT1.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , Sitios de Unión , Dominio Catalítico , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo
2.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34790902

RESUMEN

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Animales , Azacitidina/farmacología , ADN/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Decitabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Ratones
4.
Nat Commun ; 8: 16081, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28714473

RESUMEN

The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Descubrimiento de Drogas/métodos , Biblioteca de Genes , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Staphylococcus aureus/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Evaluación Preclínica de Medicamentos , Terapia Molecular Dirigida , Mycobacterium tuberculosis/metabolismo , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA