RESUMEN
Exome sequencing (ES) has become the method of choice for diagnosing rare diseases, while the availability of short-read genome sequencing (SR-GS) in a medical setting is increasing. In addition, new sequencing technologies, such as long-read genome sequencing (LR-GS) and transcriptome sequencing, are being increasingly used. However, the contribution of these techniques compared to widely used ES is not well established, particularly in regards to the analysis of non-coding regions. In a pilot study of five probands affected by an undiagnosed neurodevelopmental disorder, we performed trio-based short-read GS and long-read GS as well as case-only peripheral blood transcriptome sequencing. We identified three new genetic diagnoses, none of which affected the coding regions. More specifically, LR-GS identified a balanced inversion in NSD1, highlighting a rare mechanism of Sotos syndrome. SR-GS identified a homozygous deep intronic variant of KLHL7 resulting in a neoexon inclusion, and a de novo mosaic intronic 22-bp deletion in KMT2D, leading to the diagnosis of Perching and Kabuki syndromes, respectively. All three variants had a significant effect on the transcriptome, which showed decreased gene expression, mono-allelic expression and splicing defects, respectively, further validating the effect of these variants. Overall, in undiagnosed patients, the combination of short and long read GS allowed the detection of cryptic variations not or barely detectable by ES, making it a highly sensitive method at the cost of more complex bioinformatics approaches. Transcriptome sequencing is a valuable complement for the functional validation of variations, particularly in the non-coding genome.
Asunto(s)
Discapacidades del Desarrollo , Exoma , Niño , Humanos , Exoma/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Proyectos Piloto , Mapeo Cromosómico , Perfilación de la Expresión Génica/métodosRESUMEN
BACKGROUND: Development of tumours such as adrenocortical carcinomas (ACC), choroid plexus tumours (CPT) or female breast cancers before age 31 or multiple primary cancers belonging to the Li-Fraumeni (LFS) spectrum is, independently of the familial history, highly suggestive of a germline TP53 mutation. The aim of this study was to determine the contribution of de novo and mosaic mutations to LFS. METHODS AND RESULTS: Among 328 unrelated patients harbouring a germline TP53 mutation identified by Sanger sequencing and/or QMPSF, we could show that the mutations had occurred de novo in 40 cases, without detectable parental age effect. Sanger sequencing revealed two mosaic mutations in a child with ACC and in an unaffected father of a child with medulloblastoma. Re-analysis of blood DNA by next-generation sequencing, performed at a depth above 500X, from 108 patients suggestive of LFS without detectable TP53 mutations, allowed us to identify 6 additional cases of mosaic TP53 mutations, in 2/49 children with ACC, 2/21 children with CPT, in 1/31 women with breast cancer before age 31 and in a patient who developed an osteosarcoma at age 12, a breast carcinoma and a breast sarcoma at age 35. CONCLUSIONS: This study performed on a large series of TP53 mutation carriers allows estimating the contribution to LFS of de novo mutations to at least 14% (48/336) and suggests that approximately one-fifth of these de novo mutations occur during embryonic development. Considering the medical impact of TP53 mutation identification, medical laboratories in charge of TP53 testing should ensure the detection of mosaic mutations.
Asunto(s)
Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética , Carcinoma Corticosuprarrenal/sangre , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , Adulto , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Niño , Neoplasias del Plexo Coroideo/sangre , Neoplasias del Plexo Coroideo/genética , Neoplasias del Plexo Coroideo/patología , Femenino , Mutación de Línea Germinal/genética , Humanos , Síndrome de Li-Fraumeni/sangre , Síndrome de Li-Fraumeni/patología , Masculino , Persona de Mediana Edad , Mosaicismo , Proteína p53 Supresora de Tumor/sangre , Adulto JovenRESUMEN
While de novo variants (DNV) are overall at low risk of recurrence in subsequent pregnancies, a subset is at high risk due to parental mosaicism. Accurately identifying cases of parental mosaicism is therefore important for genetic counseling in clinical care. Some studies have investigated the rate of parental mosaics, but most were either limited by the sensitivity of the techniques (i.e. exome or genome sequencing), or focused on specific types of disease such as epileptic syndromes. This study aimed to determine the proportion of parental mosaicism among the DNV causing neurodevelopmental disorders (NDDs) in a series not enriched in epilepsy syndromes. We collected 189 patients with NDD-associated DNV. We applied a smMIP enrichment method and sequenced parental blood DNA samples to an average depth of 7000x. Power simulation indicated that mosaicism with an allelic fraction of 0.5% would have been detected for 87% of positions with 90% power. We observed seven parental mosaic variants (3.7% of families), of which four (2.1% of families) had an allelic fraction of less than 1%. In total, our study identifies a relatively low proportion of parental mosaicism in NDD-associated DNVs and raises the question of a biological mechanism behind the higher rates of parental mosaicism detected in other studies, particularly those focusing on epileptic syndromes.
Asunto(s)
Síndromes Epilépticos , Trastornos del Neurodesarrollo , Femenino , Embarazo , Humanos , Mosaicismo , Trastornos del Neurodesarrollo/genética , Padres , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Since the end of 2020, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have emerged and spread worldwide. Tracking their evolution has been a challenge due to the huge number of positive samples and limited capacities of whole-genome sequencing. Two in-house variant-screening RT-PCR assays were successively designed in our laboratory in order to detect specific known mutations in the spike region and to rapidly detect successively emerging VOCs. The first one (RT-PCR#1) targeted the 69-70 deletion and the N501Y substitution simultaneously, whereas the second one (RT-PCR#2) targeted the E484K, E484Q, and L452R substitutions simultaneously. To evaluate the analytical performance of these two RT-PCRs, 90 negative and 30 positive thawed nasopharyngeal swabs were retrospectively analyzed, and no discordant results were observed. Concerning the sensitivity, for RT-PCR#1, serial dilutions of the WHO international standard SARS-CoV-2 RNA, corresponding to the genome of an Alpha variant, were all detected up to 500 IU/mL. For RT-PCR#2, dilutions of a sample harboring the E484K substitution and of a sample harboring the L452R and E484Q substitutions were all detected up to 1000 IU/mL and 2000 IU/mL, respectively. To evaluate the performance in a real-life hospital setting, 1308 and 915 profiles of mutations, obtained with RT-PCR#1 and RT-PCR#2, respectively, were prospectively compared to next-generation sequencing (NGS) data. The two RT-PCR assays showed an excellent concordance with the NGS data, with 99.8% for RT-PCR#1 and 99.2% for RT-PCR#2. Finally, for each mutation targeted, the clinical sensitivity, the clinical specificity and the positive and negative predictive values showed excellent clinical performance. Since the beginning of the SARS-CoV-2 pandemic, the emergence of variants-impacting the disease's severity and the efficacy of vaccines and therapies-has forced medical analysis laboratories to constantly adapt to the strong demand for screening them. Our data showed that in-house RT-PCRs are useful and adaptable tools for monitoring such rapid evolution and spread of SARS-CoV-2 VOCs.
Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , ARN Viral/genética , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Hospitales , Mutación , Prueba de COVID-19RESUMEN
The detection of copy-number variations (CNVs) from NGS data is underexploited as chip-based or targeted techniques are still commonly used. We assessed the performances of a workflow centered on CANOES, a bioinformatics tool based on read depth information. We applied our workflow to gene panel (GP) and whole-exome sequencing (WES) data, and compared CNV calls to quantitative multiplex PCR of short fluorescent fragments (QMSPF) or array comparative genomic hybridization (aCGH) results. From GP data of 3776 samples, we reached an overall positive predictive value (PPV) of 87.8%. This dataset included a complete comprehensive QMPSF comparison of four genes (60 exons) on which we obtained 100% sensitivity and specificity. From WES data, we first compared 137 samples with aCGH and filtered comparable events (exonic CNVs encompassing enough aCGH probes) and obtained an 87.25% sensitivity. The overall PPV was 86.4% following the targeted confirmation of candidate CNVs from 1056 additional WES. In addition, our CANOES-centered workflow on WES data allowed the detection of CNVs with a resolution of single exons, allowing the detection of CNVs that were missed by aCGH. Overall, switching to an NGS-only approach should be cost-effective as it allows a reduction in overall costs together with likely stable diagnostic yields. Our bioinformatics pipeline is available at: https://gitlab.bioinfo-diag.fr/nc4gpm/canoes-centered-workflow .
Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma/normas , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Hibridación Genómica Comparativa/normas , Humanos , Reacción en Cadena de la Polimerasa Multiplex/normas , Sensibilidad y Especificidad , Flujo de TrabajoRESUMEN
We have developed and validated for the diagnosis of inherited colorectal cancer (CRC) a massive parallel sequencing strategy based on: (i) fast capture of exonic and intronic sequences from ten genes involved in Mendelian forms of CRC (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, STK11, SMAD4, BMPR1A and PTEN); (ii) sequencing on MiSeq and NextSeq 500 Illumina platforms; (iii) a bioinformatic pipeline that includes BWA-Picard-GATK (Broad Institute) and CASAVA (Illumina) in parallel for mapping and variant calling, Alamut Batch (Interactive BioSoftware) for annotation, CANOES for CNV detection and finally, chimeric reads analysis for the detection of other types of structural variants (SVs). Analysis of 1644 new index cases allowed the identification of 323 patients with class 4 or 5 variants, corresponding to a 20% disease-causing variant detection rate. This rate reached 37% in patients with Lynch syndrome, suspected on the basis of tumour analyses. Thanks to this strategy, we detected overlapping phenotypes (e.g., MUTYH biallelic mutations mimicking Lynch syndrome), mosaic alterations and complex SVs such as a genomic deletion involving the last BMPR1A exons and PTEN, an Alu insertion within MSH2 exon 8 and a mosaic deletion of STK11 exons 3-10. This strategy allows, in a single step, detection of all types of CRC gene alterations including SVs and provides a high disease-causing variant detection rate, thus optimizing the diagnosis of inherited CRC.
Asunto(s)
Neoplasias Colorrectales/genética , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Adulto , Neoplasias Colorrectales/diagnóstico , Exones , Femenino , Pruebas Genéticas/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Intrones , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/normasRESUMEN
In the Li-Fraumeni syndrome (LFS) resulting from germline TP53 mutations, the MDM2 SNP309G allele has been shown to be associated with an earlier age of tumour onset, however the significance of this association is controversial. The 285C variation, also located in the MDM2 promoter, has been shown to reduce the strength of Sp1 binding to MDM2 promoter, antagonizing the effect of the 309G variation. In this study, we investigated the interaction of the MDM2 SNP285 and 309 in a large series of 195 LFS patients. Although we observed a lower mean age of tumour onset in patients with MDM2 SNP309 T/G or G/G genotype (23.1 years) than in patients with T/T genotype (27.3 years), the difference was not statistically significant. In contrast, patients with the 285-309 G-G haplotype develop tumours 5 years earlier than patients harbouring other haplotypes (p = 0.044). This result shows that the MDM2 285-309 G-G is a higher risk haplotype in patients with germline TP53 mutations. This study confirms that the MDM2 309G variation is deleterious when its effect is not neutralized by the 285C variation and illustrates the interfering effects of SNPs located within a gene acting as modifier factor in a Mendelian disease.