Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37481701

RESUMEN

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Asunto(s)
Síndrome de Rett , Humanos , Ratones , Animales , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primates/genética , Terapia Genética , Mutación
2.
J Neurosci ; 36(37): 9669-82, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629717

RESUMEN

UNLABELLED: Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by autosomal-recessive mutations in CLN3 for which no treatment exists. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline and premature death (late teens to 20s). We explored a gene delivery approach for JNCL by generating two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and ß-actin promoters to drive low versus high transgene expression, respectively. This approach was based on the expectation that low CLN3 levels are required for cellular homeostasis due to minimal CLN3 expression postnatally, although this had not yet been demonstrated in vivo One-month-old Cln3(Δex7/8) mice received one systemic (intravenous) injection of scAAV9/MeCP2-hCLN3 or scAAV9/ß-actin-hCLN3, with green fluorescent protein (GFP)-expressing viruses as controls. A promoter-dosage effect was observed in all brain regions examined, in which hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/ß-actin-hCLN3 versus scAAV9/MeCP2-hCLN3. However, a disconnect occurred between CLN3 levels and disease improvement, because only the scAAV9 construct driving low CLN3 expression (scAAV9/MeCP2-hCLN3) corrected motor deficits and attenuated microglial and astrocyte activation and lysosomal pathology. This may have resulted from preferential promoter usage because transgene expression after intravenous scAAV9/MeCP2-GFP injection was primarily detected in NeuN(+) neurons, whereas scAAV9/ß-actin-GFP drove transgene expression in GFAP(+) astrocytes. This is the first demonstration of a systemic delivery route to restore CLN3 in vivo using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals. SIGNIFICANCE STATEMENT: Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by CLN3 mutations. We explored a gene delivery approach using two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and ß-actin promoters. hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/ß-actin-hCLN3 versus scAAV9/MeCP2-hCLN3 after a single systemic injection. However, only scAAV9/MeCP2-hCLN3 corrected motor deficits and attenuated glial activation and lysosomal pathology. This may reflect preferential promoter usage because transgene expression with scAAV9/MeCP2-green fluorescent protein (GFP) was primarily in neurons, whereas scAAV9/ß-actin-GFP drove transgene expression in astrocytes. This is the first demonstration of systemic delivery for CLN3 using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals.


Asunto(s)
Dependovirus/genética , Terapia Genética , Glicoproteínas de Membrana/uso terapéutico , Chaperonas Moleculares/uso terapéutico , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/terapia , Actinas/genética , Actinas/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Humanos , Masculino , Glicoproteínas de Membrana/genética , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética , Trastornos del Movimiento/etiología , Trastornos del Movimiento/terapia , Mutación/genética , Neuroglía/metabolismo , Neuroglía/patología , Lipofuscinosis Ceroideas Neuronales/complicaciones , Lipofuscinosis Ceroideas Neuronales/patología , Neuronas/metabolismo , Neuronas/patología
3.
Hum Mol Genet ; 24(19): 5524-41, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206889

RESUMEN

Proximal spinal muscular atrophy (SMA) is the most frequent cause of hereditary infant mortality. SMA is an autosomal recessive neuromuscular disorder that results from the loss of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The SMN2 gene produces an insufficient amount of full-length SMN protein that results in loss of motor neurons in the spinal cord and subsequent muscle paralysis. Previously we have shown that overexpression of human SMN in neurons in the SMA mouse ameliorates the SMA phenotype while overexpression of human SMN in skeletal muscle had no effect. Using Cre recombinase, here we show that either deletion or replacement of Smn in motor neurons (ChAT-Cre) significantly alters the functional output of the motor unit as measured with compound muscle action potential and motor unit number estimation. However ChAT-Cre alone did not alter the survival of SMA mice by replacement and did not appreciably affect survival when used to deplete SMN. However replacement of Smn in both neurons and glia in addition to the motor neuron (Nestin-Cre and ChAT-Cre) resulted in the greatest improvement in survival of the mouse and in some instances complete rescue was achieved. These findings demonstrate that high expression of SMN in the motor neuron is both necessary and sufficient for proper function of the motor unit. Furthermore, in the mouse high expression of SMN in neurons and glia, in addition to motor neurons, has a major impact on survival.


Asunto(s)
Neuronas Motoras/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Eliminación de Secuencia
4.
Hum Mol Genet ; 24(21): 6160-73, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26276812

RESUMEN

Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).


Asunto(s)
Músculos/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Marcadores Genéticos , Masculino , Ratones , Contracción Muscular , Músculos/fisiología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
5.
Hum Mol Genet ; 24(13): 3847-60, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25859009

RESUMEN

The 2007 Consensus Statement for Standard of Care in Spinal Muscular Atrophy (SMA) notes that patients suffer from gastroesophageal reflux, constipation and delayed gastric emptying. We used two mouse models of SMA to determine whether functional GI complications are a direct consequence of or are secondary to survival motor neuron (Smn) deficiency. Our results show that despite normal activity levels and food and water intake, Smn deficiency caused constipation, delayed gastric emptying, slow intestinal transit and reduced colonic motility without gross anatomical or histopathological abnormalities. These changes indicate alterations to the intrinsic neural control of gut functions mediated by the enteric nervous system (ENS). Indeed, Smn deficiency led to disrupted ENS signaling to the smooth muscle of the colon but did not cause enteric neuron loss. High-frequency electrical field stimulation (EFS) of distal colon segments produced up to a 10-fold greater contractile response in Smn deficient tissues. EFS responses were not corrected by the addition of a neuronal nitric oxide synthase inhibitor indicating that the increased contractility was due to hyperexcitability and not disinhibition of the circuitry. The GI symptoms observed in mice are similar to those reported in SMA patients. Together these data suggest that ENS cells are susceptible to Smn deficiency and may underlie the patient GI symptoms.


Asunto(s)
Sistema Nervioso Entérico/fisiopatología , Enfermedades Gastrointestinales/metabolismo , Tracto Gastrointestinal/inervación , Atrofia Muscular Espinal/complicaciones , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/deficiencia , Animales , Modelos Animales de Enfermedad , Femenino , Vaciamiento Gástrico , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/fisiopatología , Tracto Gastrointestinal/fisiopatología , Humanos , Masculino , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
6.
Nature ; 475(7357): 497-500, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21716289

RESUMEN

Rett's syndrome (RTT) is an X-chromosome-linked autism spectrum disorder caused by loss of function of the transcription factor methyl-CpG-binding protein 2 (MeCP2). Although MeCP2 is expressed in most tissues, loss of MeCP2 expression results primarily in neurological symptoms. Earlier studies suggested the idea that RTT is due exclusively to loss of MeCP2 function in neurons. Although defective neurons clearly underlie the aberrant behaviours, we and others showed recently that the loss of MECP2 from glia negatively influences neurons in a non-cell-autonomous fashion. Here we show that in globally MeCP2-deficient mice, re-expression of Mecp2 preferentially in astrocytes significantly improved locomotion and anxiety levels, restored respiratory abnormalities to a normal pattern, and greatly prolonged lifespan compared to globally null mice. Furthermore, restoration of MeCP2 in the mutant astrocytes exerted a non-cell-autonomous positive effect on mutant neurons in vivo, restoring normal dendritic morphology and increasing levels of the excitatory glutamate transporter VGLUT1. Our study shows that glia, like neurons, are integral components of the neuropathology of RTT, and supports the targeting of glia as a strategy for improving the associated symptoms.


Asunto(s)
Neuroglía/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Animales , Ansiedad/metabolismo , Astrocitos/metabolismo , Conducta Animal , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Neuroglía/patología , Neuronas/metabolismo , Síndrome de Rett/fisiopatología , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
7.
Mol Ther ; 23(3): 477-87, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25358252

RESUMEN

Spinal muscular atrophy (SMA) is the most frequent lethal genetic neurodegenerative disorder in infants. The disease is caused by low abundance of the survival of motor neuron (SMN) protein leading to motor neuron degeneration and progressive paralysis. We previously demonstrated that a single intravenous injection (IV) of self-complementary adeno-associated virus-9 carrying the human SMN cDNA (scAAV9-SMN) resulted in widespread transgene expression in spinal cord motor neurons in SMA mice as well as nonhuman primates and complete rescue of the disease phenotype in mice. Here, we evaluated the dosing and efficacy of scAAV9-SMN delivered directly to the cerebral spinal fluid (CSF) via single injection. We found widespread transgene expression throughout the spinal cord in mice and nonhuman primates when using a 10 times lower dose compared to the IV application. Interestingly, in nonhuman primates, lower doses than in mice can be used for similar motor neuron targeting efficiency. Moreover, the transduction efficacy is further improved when subjects are kept in the Trendelenburg position to facilitate spreading of the vector. We present a detailed analysis of transduction levels throughout the brain, brainstem, and spinal cord of nonhuman primates, providing new guidance for translation toward therapy for a wide range of neurodegenerative disorders.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Atrofia Muscular Espinal/terapia , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Animales Recién Nacidos , Tronco Encefálico/metabolismo , Corteza Cerebral/metabolismo , ADN Complementario/administración & dosificación , ADN Complementario/genética , ADN Complementario/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Expresión Génica , Vectores Genéticos/farmacocinética , Inyecciones Epidurales , Macaca fascicularis , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transducción Genética , Transgenes
8.
J Neurosci ; 33(34): 13612-20, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23966684

RESUMEN

De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development. Most studies have focused on male mouse models because of the shorter latency to and severity in symptoms, yet how well these mice mimic the disease in affected females is not clear. Very few therapeutic treatments have been proposed for females, the more gender-appropriate model. Here, we show that self-complementary AAV9, bearing MeCP2 cDNA under control of a fragment of its own promoter (scAAV9/MeCP2), is capable of significantly stabilizing or reversing symptoms when administered systemically into female RTT mice. To our knowledge, this is the first potential gene therapy for females afflicted with RTT.


Asunto(s)
Conducta Animal/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/administración & dosificación , Síndrome de Rett/fisiopatología , Síndrome de Rett/terapia , Animales , Conducta Animal/fisiología , Recuento de Células , Dependovirus/fisiología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Proteína 2 de Unión a Metil-CpG/biosíntesis , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Mutación/genética , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fosfopiruvato Hidratasa/metabolismo , Pletismografía , Equilibrio Postural/genética , Equilibrio Postural/fisiología , Reconocimiento en Psicología/fisiología , Respiración , Síndrome de Rett/genética , Síndrome de Rett/patología , Prueba de Desempeño de Rotación con Aceleración Constante
9.
Hum Mol Genet ; 21(7): 1625-38, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22186025

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(-10,-29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn-/-, SMN2+/+, SMNΔ7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients.


Asunto(s)
Morfolinos/administración & dosificación , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/administración & dosificación , Animales , Inyecciones , Ratones , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Empalme del ARN , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética
10.
Mol Ther ; 21(12): 2148-59, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24008656

RESUMEN

Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (ALS) resulting in progressive motor neuron death through one or more acquired toxicities. Involvement of wild-type SOD1 has been linked to sporadic ALS, as misfolded SOD1 has been reported in affected tissues of sporadic patients and toxicity of astrocytes derived from sporadic ALS patients to motor neurons has been reported to be reduced by lowering the synthesis of SOD1. We now report slowed disease onset and progression in two mouse models following therapeutic delivery using a single peripheral injection of an adeno-associated virus serotype 9 (AAV9) encoding an shRNA to reduce the synthesis of ALS-causing human SOD1 mutants. Delivery to young mice that develop aggressive, fatal paralysis extended survival by delaying both disease onset and slowing progression. In a later-onset model, AAV9 delivery after onset markedly slowed disease progression and significantly extended survival. Moreover, AAV9 delivered intrathecally to nonhuman primates is demonstrated to yield robust SOD1 suppression in motor neurons and glia throughout the spinal cord and therefore, setting the stage for AAV9-mediated therapy in human clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/terapia , Dependovirus/genética , Terapia Genética , Neuronas Motoras/metabolismo , Neuroglía/metabolismo , ARN Interferente Pequeño/genética , Superóxido Dismutasa/genética , Administración Intravenosa , Esclerosis Amiotrófica Lateral/genética , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Vectores Genéticos , Células HEK293 , Humanos , Inyecciones Espinales , Macaca fascicularis , Ratones , Neuronas Motoras/patología , Neuroglía/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
11.
Hum Mol Genet ; 19(20): 3895-905, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20639395

RESUMEN

Proximal spinal muscular atrophy (SMA) is a debilitating neurological disease marked by isolated lower motor neuron death and subsequent atrophy of skeletal muscle. Historically, SMA pathology was thought to be limited to lower motor neurons and the skeletal muscles they control, yet there are several reports describing the coincidence of cardiovascular abnormalities in SMA patients. As new therapies for SMA emerge, it is necessary to determine whether these non-neuromuscular systems need to be targeted. Therefore, we have characterized left ventricular (LV) function of SMA mice (SMN2+/+; SMNΔ7+/+; Smn-/-) and compared it with that of their unaffected littermates at 7 and 14 days of age. Anatomical and physiological measurements made by electrocardiogram and echocardiography show that affected mouse pups have a dramatic decrease in cardiac function. At 14 days of age, SMA mice have bradycardia and develop a marked dilated cardiomyopathy with a concomitant decrease in contractility. Signs of decreased cardiac function are also apparent as early as 7 days of age in SMA animals. Delivery of a survival motor neuron-1 transgene using a self-complementary adeno-associated virus serotype 9 abolished the symptom of bradycardia and significantly decreased the severity of the heart defect. We conclude that severe SMA animals have compromised cardiac function resulting at least partially from early bradycardia, which is likely attributable to aberrant autonomic signaling. Further cardiographic studies of human SMA patients are needed to clarify the clinical relevance of these findings from this SMA mouse.


Asunto(s)
Bradicardia , Dependovirus/genética , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/fisiopatología , Atrofia Muscular Espinal/fisiopatología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Bradicardia/genética , Bradicardia/fisiopatología , Bradicardia/terapia , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Terapia Genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/terapia , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/complicaciones , Contracción Miocárdica , Proteínas del Tejido Nervioso , Proteínas del Complejo SMN , Función Ventricular Izquierda
13.
Mol Ther ; 19(11): 1971-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21811247

RESUMEN

Adeno-associated virus type 9 (AAV9) is a powerful tool for delivering genes throughout the central nervous system (CNS) following intravenous injection. Preclinical results in pediatric models of spinal muscular atrophy (SMA) and lysosomal storage disorders provide a compelling case for advancing AAV9 to the clinic. An important translational step is to demonstrate efficient CNS targeting in large animals at various ages. In the present study, we tested systemically injected AAV9 in cynomolgus macaques, administered at birth through 3 years of age for targeting CNS and peripheral tissues. We show that AAV9 was efficient at crossing the blood-brain barrier (BBB) at all time points investigated. Transgene expression was detected primarily in glial cells throughout the brain, dorsal root ganglia neurons and motor neurons within the spinal cord, providing confidence for translation to SMA patients. Systemic injection also efficiently targeted skeletal muscle and peripheral organs. To specifically target the CNS, we explored AAV9 delivery to cerebrospinal fluid (CSF). CSF injection efficiently targeted motor neurons, and restricted gene expression to the CNS, providing an alternate delivery route and potentially lower manufacturing requirements for older, larger patients. Our findings support the use of AAV9 for gene transfer to the CNS for disorders in pediatric populations.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Atrofia Muscular Espinal/terapia , Animales , Encéfalo/metabolismo , Dependovirus/genética , Regulación de la Expresión Génica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Humanos , Inyecciones Epidurales , Inyecciones Intraarteriales , Macaca , Masculino , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Neuroglía/metabolismo , Médula Espinal/metabolismo , Porcinos , Factores de Tiempo , Transducción Genética , Transgenes/genética
14.
Nat Med ; 27(10): 1701-1711, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34608334

RESUMEN

Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300-1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.


Asunto(s)
Productos Biológicos/efectos adversos , Terapia Genética/efectos adversos , Proteínas Recombinantes de Fusión/efectos adversos , Atrofias Musculares Espinales de la Infancia/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Autopsia , Productos Biológicos/administración & dosificación , ADN/genética , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/efectos adversos , Vectores Genéticos/genética , Humanos , Lactante , Recién Nacido , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/mortalidad , Atrofias Musculares Espinales de la Infancia/patología , Distribución Tisular/efectos de los fármacos
15.
Mol Ther ; 17(6): 980-91, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19277011

RESUMEN

Intraventricular administration of glial cell line-derived neurotrophic factor (GDNF) in primate and humans to study Parkinson's disease (PD) has revealed the potential for GDNF to induce weight loss. Our previous data indicate that bilateral continuous hypothalamic GDNF overexpression via recombinant adeno-associated virus (rAAV) results in significant failure to gain weight in young rats and weight loss in aged rats. Based on these previous results, we hypothesized that because the nigrostriatal tract passes through the lateral hypothalamus, motor hyperactivity mediated by nigrostriatal dopamine (DA) may have been responsible for the previously observed effect on body weight. In this study, we compared bilateral injections of rAAV2/5-GDNF in hypothalamus versus substantia nigra (SN) in aged Brown-Norway X Fisher 344 rats. Nigrostriatal GDNF overexpression resulted in significantly greater weight loss than rats treated in hypothalamus. The nigral or hypothalamic GDNF-induced weight loss was unrelated to motor activity levels of the rats, though some of the weight loss could be attributed to a transient reduction in food intake. Forebrain DA levels did not account for the observed effects on body weight, although GDNF-induced increases in nucleus accumbens DA may have partially contributed to this effect in the hypothalamic GDNF-treated group. However, only nigrostriatal GDNF overexpression induced activation of phosphorylated extracellular signal-regulated kinase (p-ERK) in a small population of corticotrophin-releasing factor [corticotrophin-releasing hormone (CRH)] neurons located specifically in the medial parvocellullar division (MPD) of the paraventricular nucleus of the hypothalamus. Activation of these hypothalamic CRH neurons likely accounted for the observed metabolic effects leading to weight loss in obese rats.


Asunto(s)
Envejecimiento/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Obesidad/genética , Pérdida de Peso/genética , Adiposidad/genética , Animales , Western Blotting , Peso Corporal/genética , Catecolaminas/metabolismo , Cromatografía Líquida de Alta Presión , Dependovirus/genética , Dopamina/metabolismo , Ingestión de Alimentos/genética , Ensayo de Inmunoadsorción Enzimática , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Hipotálamo/metabolismo , Inmunohistoquímica , Masculino , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sustancia Negra/metabolismo
16.
Hum Gene Ther ; 19(1): 71-82, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18072858

RESUMEN

Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of spinal lower motoneurons. Gene delivery is a promising strategy to deliver therapeutic molecules to these vulnerable cells. However, definition of an optimal route of delivery capable of accessing neurons over a considerable extent of the neuraxis represents a significant logistical problem. Intramuscular vector injections are not ideal as this approach would involve hundreds of injections to completely treat an ALS patient and also would be dependent on retrograde transport of the viral platform of choice. Alternatively, upper motoneurons could deliver trophic factors over considerable distances by anterograde transport after a relatively localized intracerebral injection. To test this approach, the present study was designed to compare the corticospinal (CST) and rubrospinal (RST) tracts for their ability to transport recombinant adeno-associated virus serotype 5 (rAAV5)-derived green fluorescent protein (GFP) or glial cell line-derived neurotrophic factor (GDNF) to the spinal cord. Unilateral injections of rAAV5-GFP into the red nucleus (RN) or motor cortex of normal rats produced GFP-positive fibers in the appropriate descending tracts extending to the lumbar spinal cord. For both tracts, GFP-positive axonal projections into the spinal gray matter were consistently observed. GDNF immunohistochemistry demonstrated that confirmed RN injections resulted in GDNF-positive fibers projecting into spinal gray matter as seen in the GFP group. In contrast, confirmed cortical rAAV5-GDNF injections resulted in less evident staining in spinal cord. Spinal cord GDNF levels were elevated at distances up to 72 mm from the injection sites, and confirmed that RST-related GDNF transport to spinal cord surpassed CST-associated delivery.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Tractos Piramidales/metabolismo , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Animales , ADN Recombinante/administración & dosificación , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Masculino , Ratas , Ratas Sprague-Dawley
17.
Hum Gene Ther ; 19(1): 61-70, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18052722

RESUMEN

Targeting lower motor neurons (LMNs) for gene delivery could be useful for disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. LMNs reside in the ventral gray matter of the spinal cord and send axonal projections to innervate skeletal muscle. Studies have used intramuscular injections of adeno-associated virus type 2 (AAV2) to deliver viral vectors to LMNs via retrograde transport. However, treating large areas of the spinal cord in a human would require numerous intramuscular injections, thereby increasing viral titer and risk of immune response. New AAV serotypes, such as AAV8, have a dispersed transduction pattern after intravenous or intraperitoneal injection in neonatal mice, and may transduce LMNs by retrograde transport or through entry into the nervous system. To test LMN transduction after systemic injection, we administered recombinant AAV8 (rAAV8) carrying the green fluorescent protein (GFP) gene by intravenous or intraperitoneal injection to neonatal mice on postnatal day 1. Tissues were harvested 5 and 14 days postinjection and analyzed by real-time polymerase chain reaction and GFP immunohistochemistry to assess the presence of AAV genomes and GFP expression, respectively. Spinal cords were positive for AAV genomes at both time points. GFP immunohistochemistry revealed infrequent labeling of LMNs across all time points and injection routes. Somewhat surprisingly, there was extensive labeling of fibers in the dorsal horns and columns, indicating dorsal root ganglion transduction across all time points and injection routes. Our data suggest that systemic injection of rAAV8 is not an effective delivery route to target lower motor neurons, but could be useful for targeting sensory pathways in chronic pain.


Asunto(s)
Dependovirus/genética , Ganglios Espinales/metabolismo , Vectores Genéticos/administración & dosificación , Neuronas Motoras/metabolismo , Transducción Genética , Animales , Animales Recién Nacidos , ADN Recombinante/administración & dosificación , Dependovirus/clasificación , Ganglios Espinales/citología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Ratones , Neuronas Motoras/citología , Reacción en Cadena de la Polimerasa
19.
Methods Mol Biol ; 1382: 231-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611590

RESUMEN

Systemic gene delivery is useful for modeling and treatment of a body-wide disease. Recently, it has been shown that certain agents, when delivered systemically, can efficiently target the central nervous system. This technique has been used to model and treat rodent models of neurological disease with unprecedented success. Here, we describe intravenous delivery in neonate and adult mice. These techniques are easily learned and have minimal equipment requirements.


Asunto(s)
Sistema Nervioso Central/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Enfermedades del Sistema Nervioso/terapia , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Inyecciones Intravenosas , Ratones , Enfermedades del Sistema Nervioso/metabolismo , Especificidad de Órganos , Resultado del Tratamiento
20.
Nat Med ; 22(4): 397-403, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26928464

RESUMEN

Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non-cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte-mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Antígenos de Histocompatibilidad Clase I/biosíntesis , Neuronas Motoras/patología , Receptores KIR3DL2/genética , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Cadáver , Muerte Celular/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Mutación , Superóxido Dismutasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA