Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 151(5): 1011-1024.e7, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27506299

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) metastasizes to liver at early stages, making this disease highly lethal. Tissue inhibitor of metalloproteinases-1 (TIMP1) creates a metastasis-susceptible environment in the liver. We investigated the role of TIMP1 and its receptor CD63 in metastasis of early-stage pancreatic tumors using mice and human cell lines and tissue samples. METHODS: We obtained liver and plasma samples from patients in Germany with chronic pancreatitis, pancreatic intra-epithelial neoplasia, or PDAC, as well as hepatic stellate cells (HSCs). We performed studies with Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (CPK) mice, Pdx-1+/Cre;Kras+/LSL-G12D;Trp53+/LSL-R172H (KPC) mice, and their respective healthy littermates as control, and Cd63-/- mice with their wild-type littermates. KPC mice were bred with Timp1-/- mice to produce KPCxTimp1-/- mice. TIMP1 was overexpressed and CD63 was knocked down in mice using adenoviral vectors AdTIMP1 or AdshCD63, respectively. Hepatic susceptibility to metastases was determined after intravenous inoculation of syngeneic 9801L pancreas carcinoma cells. Pancreata and liver tissues were collected and analyzed by histology, immunohistochemical, immunoblot, enzyme-linked immunosorbent assay, and quantitative polymerase chain reaction analyses. We analyzed the effects of TIMP1 overexpression or knockdown and CD63 knockdown in transduced human primary HSCs and HSC cell lines. RESULTS: Chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients expressed higher levels of TIMP1 protein than normal pancreas. The premalignant pancreatic lesions that developed in KPC and CPK mice expressed TIMP1 and secreted it into the circulation. In vitro and in vivo, TIMP1 activated human or mouse HSCs, which required interaction between TIMP1 and CD63 and signaling via phosphatidylinositol 3-kinase, but not TIMP1 protease inhibitor activity. This signaling pathway induced expression of endogenous TIMP1. TIMP1 knockdown in HSCs reduced their activation. Cultured TIMP1-activated human and mouse HSCs began to express stromal-derived factor-1, which induced neutrophil migration, a marker of the premetastatic niche. Mice with pancreatic intra-epithelial neoplasia-derived systemic increases in TIMP1 developed more liver metastases after injections of pancreatic cancer cells than mice without increased levels of TIMP1. This increase in formation of liver metastases from injected pancreatic cancer cells was not observed in TIMP1 or CD63 knockout mice. CONCLUSIONS: Expression of TIMP1 is increased in chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients. TIMP1 signaling via CD63 leads to activation of HSCs, which create an environment in the liver that increases its susceptibility to pancreatic tumor cells. Strategies to block TIMP1 signaling via CD63 might be developed to prevent PDAC metastasis to the liver.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/metabolismo , Lesiones Precancerosas/metabolismo , Tetraspanina 30/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Animales , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/secundario , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , Metástasis de la Neoplasia , Páncreas/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/patología , Lesiones Precancerosas/patología , Transducción de Señal , Microambiente Tumoral
2.
Oncoimmunology ; 5(2): e1075692, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27057447

RESUMEN

Microsatellite instability (MSI-H) is caused by DNA mismatch repair deficiency and occurs in 15% of colorectal cancers. MSI-H cancers generate highly immunogenic frameshift peptide (FSP) antigens, which elicit pronounced local immune responses. A subset of MSI-H colorectal cancers develops in frame of Lynch syndrome, which represents an ideal human model for studying the concept of immunoediting. Immunoediting describes how continuous anti-tumoral immune surveillance of the host eventually leads to the selection of tumor cells that escape immune cell recognition and destruction. Between 30 and 40% of Lynch syndrome-associated colorectal cancers display loss of HLA class I antigen expression as a result of Beta2-microglobulin (B2M) mutations. Whether B2M mutations result from immunoediting has been unknown. To address this question, we related B2M mutation status of Lynch syndrome-associated colorectal cancer specimens (n = 30) to CD3-positive, CD8-positive and FOXP3-positive T cell infiltration in both tumor and normal mucosa. No significant correlation between B2M mutations and immune cell infiltration was observed in tumor tissue. However, FOXP3-positive T cell infiltration was significantly lower in normal mucosa adjacent to B2M-mutant (mt) compared to B2M-wild type (wt) tumors (mean: 0.98% FOXP3-positive area/region of interest (ROI) in B2M-wt vs. 0.52% FOXP3-positive area/ROI in B2M-mt, p = 0.023). Our results suggest that in the absence of immune-suppressive regulatory T cells (Treg), the outgrowth of less immunogenic B2M-mt tumor cells is favored. This finding supports the immunoediting concept in human solid cancer development and indicates a critical role of the immune milieu in normal colonic mucosa for the course of disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA