Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829680

RESUMEN

INTRODUCTION: Individuals referred to as Non-Demented with Alzheimer's Neuropathology (NDAN) exhibit cognitive resilience despite presenting Alzheimer's disease (AD) histopathological signs. Investigating the mechanisms behind this resilience may unveil crucial insights into AD resistance. METHODS: DiI labeling technique was used to analyze dendritic spine morphology in control (CTRL), AD, and NDAN post mortem frontal cortex, particularly focusing on spine types near and far from amyloid beta (Aß) plaques. RESULTS: NDAN subjects displayed a higher spine density in regions distant from Aß plaques versus AD patients. In distal areas from the plaques, NDAN individuals exhibited more immature spines, while AD patients had a prevalence of mature spines. Additionally, our examination of levels of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), a protein associated with synaptic plasticity and AD, showed significantly lower expression in AD versus NDAN and CTRL. DISCUSSION: These results suggest that NDAN individuals undergo synaptic remodeling, potentially facilitated by Pin1, serving as a compensatory mechanism to preserve cognitive function despite AD pathology. HIGHLIGHTS: Spine density is reduced near Aß plaques compared to the distal area in CTRL, AD, and NDAN dendrites. NDAN shows higher spine density than AD in areas far from Aß plaques. Far from Aß plaques, NDAN has a higher density of immature spines, AD a higher density of mature spines. AD individuals show significantly lower levels of Pin1 compared to NDAN and CTRL.

2.
Acta Neuropathol ; 145(3): 303-324, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538112

RESUMEN

Individuals at distinct stages of Alzheimer's disease (AD) show abnormal electroencephalographic activity, which has been linked to network hyperexcitability and cognitive decline. However, whether pro-excitatory changes at the synaptic level are observed in brain areas affected early in AD, and if they are emergent in MCI, is not clearly known. Equally important, it is not known whether global synaptic E/I imbalances correlate with the severity of cognitive impairment in the continuum of AD. Measuring the amplitude of ion currents of human excitatory and inhibitory synaptic receptors microtransplanted from the hippocampus and temporal cortex of cognitively normal, mildly cognitively impaired and AD individuals into surrogate cells, we found regional differences in pro-excitatory shifts of the excitatory to inhibitory (E/I) current ratio that correlates positively with toxic proteins and degree of pathology, and impinges negatively on cognitive performance scores. Using these data with electrophysiologically anchored analysis of the synapto-proteome in the same individuals, we identified a group of proteins sustaining synaptic function and those related to synaptic toxicity. We also found an uncoupling between the function and expression of proteins for GABAergic signaling in the temporal cortex underlying larger E/I and worse cognitive performance. Further analysis of transcriptomic and in situ hybridization datasets from an independent cohort across the continuum of AD confirm regional differences in pro-excitatory shifts of the E/I balance that correlate negatively with the most recent calibrated composite scores for memory, executive function, language and visuospatial abilities, as well as overall cognitive performance. These findings indicate that early shifts of E/I balance may contribute to loss of cognitive capabilities in the continuum of AD clinical syndrome.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Encéfalo/patología , Hipocampo/patología , Cognición
3.
Cell Mol Life Sci ; 79(4): 222, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377002

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by progressive cognitive decline due to accumulating synaptic insults by toxic oligomers of amyloid beta (AßO) and tau (TauO). There is growing consensus that preventing these oligomers from interacting with synapses might be an effective approach to treat AD. However, recent clinical trial failures suggest low effectiveness of targeting Aß in late-stage AD. Researchers have redirected their attention toward TauO as the levels of this species increase later in disease pathogenesis. Here we show that AßO and TauO differentially target synapses and affect each other's binding dynamics. METHODS: Binding of labeled, pre-formed Aß and tau oligomers onto synaptosomes isolated from the hippocampus and frontal cortex of mouse and postmortem cognitively intact elderly human brains was evaluated using flow-cytometry and western blot analyses. Binding of labeled, pre-formed Aß and tau oligomers onto mouse primary neurons was assessed using immunofluorescence assay. The synaptic dysfunction was measured by fluorescence analysis of single-synapse long-term potentiation (FASS-LTP) assay. RESULTS: We demonstrated that higher TauO concentrations effectively outcompete AßO and become the prevailing synaptic-associated species. Conversely, high concentrations of AßO facilitate synaptic TauO recruitment. Immunofluorescence analyses of mouse primary cortical neurons confirmed differential synaptic binding dynamics of AßO and TauO. Moreover, in vivo experiments using old 3xTgAD mice ICV injected with either AßO or TauO fully supported these findings. Consistent with these observations, FASS-LTP analyses demonstrated that TauO-induced suppression of chemical LTP was exacerbated by AßO. Finally, predigestion with proteinase K abolished the ability of TauO to compete off AßO without affecting the ability of high AßO levels to increase synaptic TauO recruitment. Thus, unlike AßO, TauO effects on synaptosomes are hampered by the absence of protein substrate in the membrane. CONCLUSIONS: These results introduce the concept that TauO become the main synaptotoxic species at late AD, thus supporting the hypothesis that TauO may be the most effective therapeutic target for clinically manifest AD.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Humanos , Sinapsis/metabolismo , Sinaptosomas/metabolismo
4.
Alzheimers Dement ; 19(12): 5355-5370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37191183

RESUMEN

INTRODUCTION: Growing evidence supports that dysfunctional autophagy, the major cell mechanism responsible for removing protein aggregates and a route of clearance for Tau in healthy neurons, is a major finding in demented Alzheimer's disease (AD) patients. However, the association of autophagy with maintenance of cognitive integrity in resilient individuals who have AD neuropathology but remain non-demented (NDAN) has not been evaluated. METHODS: Using post mortem brain samples from age-matched healthy control, AD, and NDAN subjects, we evaluated autophagy in relation to Tau pathology using Western blot, immunofluorescence and RNA-seq. RESULTS: Compared to AD patients, NDAN subjects had preserved autophagy and reduced tauopathy. Furthermore, expression of autophagy genes and AD-related proteins were significantly associated in NDAN compared to AD and control subjects. DISCUSSION: Our results suggest preserved autophagy is a protective mechanism that maintains cognitive integrity in NDAN individuals. This novel observation supports the potential of autophagy-inducing strategies in AD therapeutics. HIGHLIGHTS: NDAN subjects have preserved autophagic protein levels comparable with control subjects. Compared to control subjects, NDAN subjects have significantly reduced Tau oligomers and PHF Tau phosphorylation at synapses that negatively correlate with autophagy markers. Transcription of autophagy genes strongly associates with AD-related proteins in NDAN donors.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/metabolismo , Encéfalo/patología , Autofagia/genética , Neuronas/metabolismo , Neuropatología , Péptidos beta-Amiloides/metabolismo
5.
J Neurosci ; 41(3): 538-554, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33239403

RESUMEN

Alzheimer's disease (AD) is characterized by progressive neurodegeneration in the cerebral cortex, histopathologically hallmarked by amyloid ß (Aß) extracellular plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. Correlation between these pathologic features and dementia has been challenged by the emergence of "nondemented with Alzheimer's neuropathology" (NDAN) individuals, cognitively intact despite displaying pathologic features of AD. The existence of these subjects suggests that some unknown mechanisms are triggered to resist Aß-mediated detrimental events. Aß accumulation affects mitochondrial redox balance, increasing oxidative stress status, which in turn is proposed as a primary culprit in AD pathogenesis. To clarify the relationship linking Aß, oxidative stress, and cognitive impairment, we performed a comparative study on AD, NDAN, and aged-matched human postmortem frontal cortices of either sex. We quantitatively analyzed immunofluorescence distribution of oxidative damage markers, and of SOD2 (superoxide dismutase 2), PGC1α [peroxisome proliferator-activated receptor (PPAR) γ-coactivator 1α], PPARα, and catalase as key factors in antioxidant response, as well as the expression of miRNA-485, as a PGC1α upstream regulator. Our results confirm dramatic redox imbalance, associated with impaired antioxidant defenses in AD brain. By contrast, NDAN individuals display low oxidative damage, which is associated with high levels of scavenging systems, possibly resulting from a lack of PGC1α miRNA-485-related inhibition. Comparative analyses in neurons and astrocytes further highlighted cell-specific mechanisms to counteract redox imbalance. Overall, our data emphasize the importance of transcriptional and post-transcriptional regulation of antioxidant response in AD. This suggests that an efficient PGC1α-dependent "safety mechanism" may prevent Aß-mediated oxidative stress, supporting neuroprotective therapies aimed at ameliorating defects in antioxidant response pathways in AD patients.


Asunto(s)
Enfermedad de Alzheimer/patología , Antioxidantes/metabolismo , Demencia/patología , Estrés Oxidativo , Corteza Prefrontal/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/enzimología , Autopsia , Demencia/metabolismo , Femenino , Depuradores de Radicales Libres/metabolismo , Humanos , Masculino , MicroARNs/genética , Neuronas/enzimología , Oxidación-Reducción , PPAR gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Corteza Prefrontal/metabolismo
6.
Growth Factors ; 33(5-6): 401-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26728403

RESUMEN

Nerve growth factor (NGF) exerts protective actions in the healthy and diseased nervous system. Intranasal administration is a suitable and safe strategy to deliver NGF to CNS neurons. We investigated whether nasal anti-NGF-antibody (ANA) administration affects neuronal autophagy, in view of its putative regulatory role in this process. We focused on olfactory bulbs (OB), neocortex (Cx), hippocampus (HF) and septal complex (SC), known to be NGF-responsive and autophagically active. Our combined molecular/morphological results demonstrate that intranasally administered ANA reaches brain NGF-target neurons and lowers the levels of endogenous NGF and its receptors. Treatment also affects - in a brain region-dependent manner - the expression of the autophagic proteins Beclin-1 and Ambra1, as well as that of proteins belonging to the Bcl2 family, namely Bax and Bcl-2, reflecting apoptotic dysregulation. This study provides a nongenetically modified, NGF-defective animal model, representing a suitable tool to investigate novel properties of the neurotrophin, especially in relation to autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Anticuerpos/inmunología , Proteínas Reguladoras de la Apoptosis/biosíntesis , Autofagia/fisiología , Factor de Crecimiento Nervioso/metabolismo , Administración Intranasal , Animales , Anticuerpos/administración & dosificación , Beclina-1 , Línea Celular Tumoral , Hipocampo/metabolismo , Neocórtex/metabolismo , Factor de Crecimiento Nervioso/inmunología , Bulbo Olfatorio/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Ratas , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteína X Asociada a bcl-2/biosíntesis
7.
Brain Behav Immun Health ; 38: 100780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38706571

RESUMEN

Alzheimer's disease is classified as a progressive disorder resulting from protein misfolding, also known as proteinopathies. Proteinopathies include synucleinopathies triggered by misfolded amyloid α-synuclein, tauopathies triggered by misfolded tau, and amyloidopathies triggered by misfolded amyloid of which Alzheimer's disease (ß-amyloid) is most prevalent. Most neurodegenerative diseases (>90%) are not due to dominantly inherited genetic causes. Instead, it is thought that the risk for disease is a complicated interaction between inherited and environmental risk factors that, with age, drive pathology that ultimately results in neurodegeneration and disease onset. Since it is increasingly appreciated that encephalitic viral infections can have profoundly detrimental neurological consequences long after the acute infection has resolved, we tested the hypothesis that viral encephalitis exacerbates the pathological profile of protein-misfolding diseases. Using a robust, reproducible, and well-characterized mouse model for ß-amyloidosis, Tg2576, we studied the contribution of alphavirus-induced encephalitis (TC-83 strain of VEEV to model alphavirus encephalitis viruses) on the progression of neurodegenerative pathology. We longitudinally evaluated neurological, neurobehavioral, and cognitive levels, followed by a post-mortem analysis of brain pathology focusing on neuroinflammation. We found more severe cognitive deficits and brain pathology in Tg2576 mice inoculated with TC-83 than in their mock controls. These data set the groundwork to investigate sporadic Alzheimer's disease and treatment interventions for this infectious disease risk factor.

8.
Brain Pathol ; 33(1): e13108, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35816404

RESUMEN

The existence of individuals who remain cognitively intact despite presenting histopathological signs of Alzheimer's disease (AD), here referred to as "Nondemented with AD neuropathology" (NDAN), suggests that some mechanisms are triggered to resist cognitive impairment. Exposed phosphatidylserine (ePS) represents a neuronal "eat-me" signal involved in microglial-mediated phagocytosis of damaged synapses. A possible mediator of this process is TREM2, a microglial surface receptor activated by ligands including PS. Based on TREM2 role in the scavenging function of microglia, we hypothesize that an efficient microglial phagocytosis of damaged synapses underlies synaptic resilience in NDAN, thus protecting from memory deficits. Using immunofluorescence microscopy, we performed a comparative study of human post-mortem frontal cortices of aged-matched, AD and NDAN individuals. We studied the distribution of activated microglia (IBA1, IBA1+ /CD68+ cells) and phagocytic microglia-related proteins (TREM2, DAP12), demonstrating higher microglial activation and TREM2 expression in NDAN versus AD. A study of the preservation of synapses around plaques, assessed using MAP2 and ßIII tubulin as dendritic and axonal markers, respectively, and PSD95 as a postsynaptic marker, revealed preserved axonal/dendritic structure around plaques in NDAN versus AD. Moreover, high levels of PSD95 around NDAN plaques and the colocalization of PSD95 with CD68 indicated a prompt removal of damaged synapses by phagocytic microglia. Furthermore, Annexin V assay on aged-matched, AD and NDAN individuals synaptosomes revealed increased levels of ePS in NDAN, confirming damaged synapses engulfment. Our results suggest a higher efficiency of TREM2-induced phagocytic microglia in removing damaged synapses, underlying synaptic resilience in NDAN individuals.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Microglía/patología , Macrófagos/patología , Disfunción Cognitiva/metabolismo , Sinapsis/metabolismo , Placa Amiloide/patología , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
9.
J Neurosci Methods ; 396: 109920, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37459899

RESUMEN

BACKGROUND: Synapses are highly specialized sites characterized by intricate networks of protein-protein interactions (PPIs) important to maintain healthy synapses. Therefore, mapping these networks could address unsolved questions about human cognition, synaptic plasticity, learning, and memory in physiological and pathological conditions. The limitation of analyzing synaptic interactions in living humans has led to the development of methods to isolate synaptic terminals (synaptosomes) from cryopreserved human brains. NEW METHOD: Here, we established a method to detect synaptic PPIs by applying flow cytometric proximity ligation assay (FlowPLA) to synaptosomes isolated from frozen human frontal cortex (FC) and hippocampus (HP) (Syn-FlowPLA). RESULTS: Applying this method in synaptosomes, we were able to detect the known post-synaptic interactions between distinct subtypes of N-methyl-D-aspartate glutamate receptors (NMDARs) and their anchoring postsynaptic density 95 protein (PSD95). Moreover, we detected the known pre-synaptic interactions between the SNARE complex proteins synaptosomal-associated protein of 25 kDa (SNAP25), synaptobrevin (VAMP2), and syntaxin 1a (STX1A). As a negative control, we analyzed the interaction between mitochondrial superoxide dismutase 2 (SOD2) and PSD95, which are not expected to be physically associated. COMPARISON WITH EXISTING METHODS: PPIs have been studied in vitro primarily by co-immunoprecipitation, affinity chromatography, protein-fragment complementation assays (PCAs), and flow cytometry. All these are valid approaches; however, they require more steps or combination with other techniques. PLA technology identifies PPIs with high specificity and sensitivity. CONCLUSIONS: The Syn-FlowPLA described here allows rapid analyses of PPIs, specifically within the synaptic compartment isolated from frozen autopsy specimens, achieving greater target sensitivity. Syn-FlowPLA, as presented here, is therefore a useful method to study human synaptic PPI in physiological and pathological conditions.


Asunto(s)
Sinapsis , Sinaptosomas , Humanos , Citometría de Flujo , Sinapsis/metabolismo , Sinaptosomas/metabolismo , Terminales Presinápticos , Plasticidad Neuronal
10.
Acta Neuropathol Commun ; 10(1): 23, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164877

RESUMEN

Clinical symptoms correlate with underlying neurodegenerative changes in the vast majority of people. However, an intriguing group of individuals demonstrate neuropathologic changes consistent with Alzheimer disease (AD) yet remain cognitively normal (termed "resilient"). Previous studies have reported less overall neuronal loss, less gliosis, and fewer comorbidities in these individuals. Herein, NanoString GeoMx™ Digital Spatial Profiler (DSP) technology was utilized to investigate protein expression differences comparing individuals with dementia and AD neuropathologic change to resilient individuals. DSP allows for spatial analysis of protein expression in multiple regions of interest (ROIs) on formalin-fixed paraffin-embedded sections. ROIs in this analysis were hippocampal neurofibrillary tangle (NFT)-bearing neurons, non-NFT-bearing neurons, and their immediate neuronal microenvironments. Analyses of 86 proteins associated with CNS cell-typing or known neurodegenerative changes in 168 ROIs from 14 individuals identified 11 proteins displaying differential expression in NFT-bearing neurons of the resilient when compared to the demented (including APP, IDH1, CD68, GFAP, SYP and Histone H3). In addition, IDH1, CD68, and SYP were differentially expressed in the environment of NFT-bearing neurons when comparing resilient to demented. IDH1 (which is upregulated under energetic and oxidative stress) and PINK1 (which is upregulated in response to mitochondrial dysfunction and oxidative stress) both displayed lower expression in the environment of NFT-bearing neurons in the resilient. Therefore, the resilient display less evidence of energetic and oxidative stress. Synaptophysin (SYP) was increased in the resilient, which likely indicates better maintenance of synapses and synaptic connections. Furthermore, neurofilament light chain (NEFL) and ubiquitin c-terminal hydrolase (Park5) were higher in the resilient in the environment of NFTs. These differences all suggest healthier intact axons, dendrites and synapses in the resilient. In conclusion, resilient individuals display protein expression patterns suggestive of an environment containing less energetic and oxidative stress, which in turn results in maintenance of neurons and their synaptic connections.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Proteómica/métodos , Sinapsis/metabolismo , Sinapsis/patología
11.
Oxid Med Cell Longev ; 2020: 6821247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32855765

RESUMEN

Riboflavin transporter deficiency (RTD) is a childhood-onset neurodegenerative disorder characterized by progressive pontobulbar palsy, sensory and motor neuron degeneration, sensorineural hearing loss, and optic atrophy. As riboflavin (RF) is the precursor of FAD and FMN, we hypothesize that both mitochondrial and peroxisomal energy metabolism pathways involving flavoproteins could be directly affected in RTD, thus impacting cellular redox status. In the present work, we used induced pluripotent stem cells (iPSCs) from RTD patients to investigate morphofunctional features, focusing on mitochondrial and peroxisomal compartments. Using this model, we document the following RTD-associated alterations: (i) abnormal colony-forming ability and loss of cell-cell contacts, revealed by light, electron, and confocal microscopy, using tight junction marker ZO-1; (ii) mitochondrial ultrastructural abnormalities, involving shape, number, and intracellular distribution of the organelles, as assessed by focused ion beam/scanning electron microscopy (FIB/SEM); (iii) redox imbalance, with high levels of superoxide anion, as assessed by MitoSOX assay accompanied by abnormal mitochondrial polarization state, evaluated by JC-1 staining; (iv) altered immunofluorescence expression of antioxidant systems, namely, glutathione, superoxide dismutase 1 and 2, and catalase, as assessed by quantitatively evaluated confocal microscopy; and (v) peroxisomal downregulation, as demonstrated by levels and distribution of fatty acyl ß-oxidation enzymes. RF supplementation results in amelioration of cell phenotype and rescue of redox status, which was associated to improved ultrastructural features of mitochondria, thus strongly supporting patient treatment with RF, to restore mitochondrial- and peroxisomal-related aspects of energy dysmetabolism and oxidative stress in RTD syndrome.


Asunto(s)
Metabolismo Energético , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Receptores Acoplados a Proteínas G/deficiencia , Riboflavina/metabolismo , Antioxidantes/metabolismo , Secuencia de Bases , Bencimidazoles/metabolismo , Transporte Biológico , Carbocianinas/metabolismo , Forma de la Célula , Niño , Preescolar , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Mitocondrias/ultraestructura , Oxidación-Reducción , Receptores Acoplados a Proteínas G/metabolismo
12.
J Alzheimers Dis ; 78(4): 1661-1678, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33185603

RESUMEN

BACKGROUND: Certain individuals, here referred to as Non-Demented with Alzheimer Neuropathology (NDAN), do not show overt neurodegeneration (N-) and remain cognitively intact despite the presence of plaques (A+) and tangles (T+) that would normally be consistent with fully symptomatic Alzheimer's disease (AD). OBJECTIVE: The existence of NDAN (A + T+N-) subjects suggests that the human brain utilizes intrinsic mechanisms that can naturally evade cognitive decline normally associated with the symptomatic stages of AD (A + T+N+). Deciphering the underlying mechanisms would prove relevant to develop complementing therapeutics to prevent progression of AD-related cognitive decline. METHODS: Previously, we have reported that NDAN present with preserved neurogenesis and synaptic integrity paralleled by absence of amyloid oligomers at synapses. Using postmortem brain samples from age-matched control subjects, demented AD patients and NDAN individuals, we performed immunofluorescence, western blots, micro transplantation of synaptic membranes in Xenopus oocytes followed by twin electrode voltage clamp electrophysiology and fluorescence assisted single synaptosome-long term potentiation studies. RESULTS: We report decreased tau oligomers at synapses in the brains of NDAN subjects. Furthermore, using novel approaches we report, for the first time, that such absence of tau oligomers at synapses is associated with synaptic functional integrity in NDAN subjects as compared to demented AD patients. CONCLUSION: Overall, these results give further credence to tau oligomers as primary actors of synaptic destruction underscoring cognitive demise in AD and support their targeting as a viable therapeutic strategy for AD and related tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Cognición , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Sinapsis/metabolismo , Proteínas tau/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Femenino , Lóbulo Frontal/patología , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Ovillos Neurofibrilares/patología , Placa Amiloide/patología , Sinapsis/patología
13.
Curr Neuropharmacol ; 17(1): 59-83, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-28676012

RESUMEN

BACKGROUND: Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-ßhydroxy 3ß-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE: The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS: Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS: 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION: Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.


Asunto(s)
Encefalopatías/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Animales , Encéfalo/metabolismo , Encefalopatías/metabolismo , Encefalopatías/prevención & control , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Histol Histopathol ; 34(5): 457-467, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30698269

RESUMEN

The esophagus is a muscular tube which transports swallowed content from the oral cavity and the pharynx to the stomach. Early in mouse development, an entire layer of the esophagus, the muscularis externa, consists of differentiated smooth muscle cells. Starting shortly after mid-gestation till about two weeks after birth, the muscularis externa almost entirely consists of striated muscle. This proximal-to-distal replacement of smooth muscle by the striated muscle depends on a number of factors. To identify the nature of the hypothetical "proximal" (mainly striated muscle originating) and "distal" (mainly smooth muscle originating) signals that govern the striated-for-smooth muscle replacement, we compared the esophagus of Myf5:MyoD null fetuses completely lacking striated muscle to the normal control using cDNA microarray analysis, followed by a comprehensive database search. Here we provide an insight into the nature of "proximal" and "distal" signals that govern the striated-for-smooth muscle replacement in the esophagus.


Asunto(s)
Esófago/embriología , Desarrollo de Músculos , Músculo Liso/embriología , Músculo Estriado/embriología , Animales , Ratones
15.
Curr Alzheimer Res ; 15(4): 345-354, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28474570

RESUMEN

BACKGROUND: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called "amyloid cascade hypothesis" has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, ß/δ, γ), PPARγ role is the most extensively studied, while information on α and ß/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. CONCLUSION: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , PPAR alfa/metabolismo , Enfermedad de Alzheimer/patología , Animales , Antipsicóticos/uso terapéutico , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , PPAR alfa/antagonistas & inhibidores
16.
Histol Histopathol ; 31(7): 699-719, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26892388

RESUMEN

The current paper is a continuation of our work most recently described in Kablar, 2011. Here, we show lists of up- and down-regulated genes obtained by a cDNA microarray analysis that compared developing mouse MyoD-/- limb musculature (MyoD-dependent, innervated by Lateral Motor Column motor neurons) and Myf5-/- back (epaxial) musculature (Myf5-dependent, innervated by Medial Motor Column motor neurons) to the control and to each other, at embryonic day 13.5 which coincides with the robust programmed cell death of motor neurons and the inability of myogenesis to undergo its normal progression in the absence of Myf5 and MyoD that at this embryonic day cannot substitute for each other. We wanted to see if/how the myogenic program couples with the neurotrophic one, and also to separate Lateral from Medial column trophic requirements, potentially relevant to Motor Neuron Diseases with the predilection for the Lateral column. Several follow-up steps revealed that Kif5c, Stxbp1 and Polb, differentially expressed in the MyoD-/- limb muscle, and Ppargc1a, Glrb and Hoxd10, differentially expressed in the Myf5-/- back muscle, are actually regulators of motor neuron numbers. We propose a series of follow-up experiments and various ways to consider our current data.


Asunto(s)
Neuronas Motoras/citología , Desarrollo de Músculos/fisiología , Músculo Esquelético/embriología , Neurogénesis/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Ratones
17.
Oxid Med Cell Longev ; 2015: 967203, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25973140

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive neurodegeneration. Pathogenetic mechanisms, triggered by ß-amyloid (Aß) accumulation, include oxidative stress, derived from energy homeostasis deregulation and involving mitochondria and peroxisomes. We here addressed the oxidative stress status and the elicited cellular response at the onset and during the progression of Aß pathology, studying the neocortex of Tg2576 model of AD. Age-dependent changes of oxidative damage markers, antioxidant enzymes, and related transcription factors were analysed in relation to the distribution of Aß peptide and oligomers, by a combined molecular/morphological approach. Nucleic acid oxidative damage, accompanied by defective antioxidant defences, and decreased PGC1α expression are already detected in 3-month-old Tg2576 neurons. Conversely, PPARα is increased in these cells, with its cytoplasmic localization suggesting nongenomic, anti-inflammatory actions. At 6 months, when intracellular Aß accumulates, PMP70 is downregulated, indicating impairment of fatty acids peroxisomal translocation and their consequent harmful accumulation. In 9-month-old Tg2576 neocortex, Aß oligomers and acrolein deposition correlate with GFAP, GPX1, and PMP70 increases, supporting a compensatory response, involving astroglial peroxisomes. At severe pathological stages, when senile plaques disrupt cortical cytoarchitecture, antioxidant capacity is gradually lost. Overall, our data suggest early therapeutic intervention in AD, also targeting peroxisomes.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Neocórtex/metabolismo , Estrés Oxidativo , Transportadoras de Casetes de Unión a ATP/metabolismo , Acroleína/metabolismo , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Genotipo , Proteína Ácida Fibrilar de la Glía , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Neocórtex/patología , Neocórtex/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Peroxisomas/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Glutatión Peroxidasa GPX1
18.
Food Funct ; 5(11): 2931-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25214316

RESUMEN

A high-fat (HF) diet increases lipid storage and oxidative stress in mouse liver and this process seems to be mediated by Peroxisome Proliferator-Activated Receptor α (PPARα). In this study we evaluated the protective effect of cocoa against hepatic steatosis induced by a HF diet. The HF diet down-regulated PPARα expression and turned off PPARα-signalling, deregulated the ß-oxidation (ß-Ox) system and catalase (CAT) activity, increased fat storage, reduced expression of enzymatic activity involved in oxidative defence in the liver and doubled the weight gain per calorie consumed compared to animals under the normal diet. In contrast, cocoa improved hepatic ß-Ox, activated PPARα-signalling and up-regulated both gene and protein expression of SOD1. Moreover, when co-administered with the HF diet, cocoa treatment counteracted lipid storage in the liver, improved the lipid-metabolizing activity and oxidative stress defences and normalized the weight gain per calorie consumed.


Asunto(s)
Grasa Abdominal/efectos de los fármacos , Cacao/química , Estrés Oxidativo/efectos de los fármacos , PPAR alfa/metabolismo , Fitoterapia/métodos , Grasa Abdominal/metabolismo , Animales , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía , Hígado Graso/etiología , Hígado Graso/prevención & control , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , PPAR alfa/genética , Preparaciones de Plantas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA