Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 25(1): 156, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581044

RESUMEN

BACKGROUND: Lung cancers represent the main cause of cancer related-death worldwide. Recently, immunotherapy alone or in combination with chemotherapy has deeply impacted the therapeutic care leading to an improved overall survival. However, relapse will finally occur, with no efficient second line treatment so far. New therapies development based on the comprehension of resistance mechanisms is necessary. However, the difficulties to obtain tumor samples before and after first line treatment hamper to clearly understand the consequence of these molecules on tumor cells and also to identify adapted second line therapies. METHODS: To overcome this difficulty, we developed multicellular tumor spheroids (MCTS) using characterized Non-Small Cell Lung Cancer (NSCLC) cell lines, monocytes from healthy donors and fibroblasts. MCTS were treated with carboplatin-paclitaxel or -gemcitabine combinations according to clinical administration schedules. The treatments impact was studied using cell viability assay, histological analyses, 3'RNA sequencing, real-time PCR, flow cytometry and confocal microscopy. RESULTS: We showed that treatments induced a decrease in cell viability and strong modifications in the transcriptomic profile notably at the level of pathways involved in DNA damage repair and cell cycle. Interestingly, we also observed a modification of genes expression considered as hallmarks of response to immune check point inhibitors and immunogenicity, particularly an increase in CD274 gene expression, coding for PD-L1. This result was validated at the protein level and shown to be restricted to tumor cells on MCTS containing fibroblasts and macrophages. This increase was also observed in an additional cell line, expressing low basal CD274 level. CONCLUSIONS: This study shows that MCTS are interesting models to study the impact of first line therapies using conditions close to clinical practice and also to identify more adapted second line or concomitant therapies for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia , Esferoides Celulares , Paclitaxel/uso terapéutico , Antígeno B7-H1
2.
Cancer Immunol Immunother ; 72(10): 3309-3322, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37466668

RESUMEN

Antitumor virotherapy stimulates the antitumor immune response during tumor cell lysis induced by oncolytic viruses (OVs). OV can be modified to express additional transgenes that enhance their therapeutic potential. In this study, we armed the spontaneously oncolytic Schwarz strain of measles viruses (MVs) with the gene encoding the cancer/testis antigen NY-ESO-1 to obtain MVny. We compared MV and MVny oncolytic activity and ability to induce NY-ESO-1 expression in six human melanoma cell lines. After MVny infection, we measured the capacity of melanoma cells to present NY-ESO-1 peptides to CD4 + and CD8 + T cell clones specific for this antigen. We assessed the ability of MVny to induce NY-ESO-1 expression and presentation in monocyte-derived dendritic cells (DCs). Our results show that MVny and MV oncolytic activity are similar with a faster cell lysis induced by MVny. We also observed that melanoma cell lines and DC expressed the NY-ESO-1 protein after MVny infection. In addition, MVny-infected melanoma cells and DCs were able to stimulate NY-ESO-1-specific CD4 + and CD8 + T cells. Finally, MVny was able to induce DC maturation. Altogether, these results show that MVny could be an interesting candidate to stimulate NY-ESO-1-specific T cells in melanoma patients with NY-ESO-1-expressing tumor cells.


Asunto(s)
Sarampión , Melanoma , Virus Oncolíticos , Masculino , Humanos , Virus Oncolíticos/genética , Proteínas de la Membrana , Virus del Sarampión/genética , Melanoma/metabolismo , Linfocitos T CD8-positivos , Antígenos de Neoplasias , Anticuerpos/metabolismo , Células Dendríticas , Sarampión/metabolismo
3.
Am J Respir Crit Care Med ; 206(3): 295-310, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486851

RESUMEN

Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.


Asunto(s)
Lesiones Encefálicas , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Leucocitos Mononucleares , Monocitos
4.
J Immunol ; 205(7): 1799-1809, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32839235

RESUMEN

CD4+ Foxp3+ regulatory T cells (Treg) are essential to maintain immune tolerance, as their loss leads to a fatal autoimmune syndrome in mice and humans. Conflicting findings have been reported concerning their metabolism. Some reports found that Treg have low mechanistic target of rapamycin (mTOR) activity and would be less dependent on this kinase compared with conventional T cells, whereas other reports suggest quite the opposite. In this study, we revisited this question by using mice that have a specific deletion of mTOR in Treg. These mice spontaneously develop a severe and systemic inflammation. We show that mTOR expression by Treg is critical for their differentiation into effector Treg and their migration into nonlymphoid tissues. We also reveal that mTOR-deficient Treg have reduced stability. This loss of Foxp3 expression is associated with partial Foxp3 DNA remethylation, which may be due to an increased activity of the glutaminolysis pathway. Thus, our work shows that mTOR is crucial for Treg differentiation, migration, and identity and that drugs targeting this metabolism pathway will impact on their biology.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Inflamación/genética , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autoinmunidad/genética , Diferenciación Celular , Movimiento Celular , Metilación de ADN , Factores de Transcripción Forkhead/genética , Glutamina/metabolismo , Activación de Linfocitos , Ratones , Ratones Noqueados , Mutación/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética
5.
Mol Cancer ; 19(1): 63, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32293453

RESUMEN

As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , MicroARNs/genética , Neoplasias de la Próstata/patología , Radiación Ionizante , Animales , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia
6.
Mol Cell ; 47(4): 622-32, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22771116

RESUMEN

Nucleotide excision repair factors, initially characterized as part of DNA repair, have been shown to participate in the transcriptional process in the absence of genotoxic attack. However, their molecular function when recruited at the promoters of activated genes together with the transcription machinery remained obscure. Here we show that the NER factors XPG and XPF are essential for establishing CTCF-dependent chromatin looping between the promoter and terminator of the activated RARß2 gene. Silencing XPG and/or XPF endonucleases, or mutations in their catalytic sites, prevents CTCF recruitment, chromatin loop formation, and optimal transcription of RARß2. We demonstrated that XPG endonuclease promotes DNA breaks and DNA demethylation at promoters allowing the recruitment of CTCF and gene looping, which is further stabilized by XPF. Our results highlight a timely orchestrated activity of the NER factors XPG and XPF in the formation of the active chromatin hub that controls gene expression.


Asunto(s)
Cromatina/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Regulación de la Expresión Génica , Secuencia de Bases , Factor de Unión a CCCTC , Dominio Catalítico , Línea Celular Tumoral , Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Regiones Promotoras Genéticas , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Regiones Terminadoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825667

RESUMEN

Extracellular vesicles (EVs), such as exosomes, are critical mediators of intercellular communication between tumor cells and other cells located in the microenvironment but also in more distant sites. Exosomes are small EVs that can carry a variety of molecules, such as lipids, proteins, and non-coding RNA, especially microRNAs (miRNAs). In thoracic cancers, including lung cancers and malignant pleural mesothelioma, EVs contribute to the immune-suppressive tumor microenvironment and to tumor growth and metastasis. In this review, we discuss the recent understanding of how exosomes behave in thoracic cancers and how and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy, with a special focus on exosomal miRNAs.


Asunto(s)
Vesículas Extracelulares/patología , Neoplasias Torácicas/patología , Microambiente Tumoral , Biomarcadores de Tumor/análisis , Ensayos Clínicos como Asunto , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs , Pronóstico , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/inmunología , Neoplasias Torácicas/terapia
8.
Cell Immunol ; 344: 103961, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31472938

RESUMEN

Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous cancer, which is immunogenic, regardless of the presence of MCPyV (80% of cases). The identification of MCC-specific epitopes recognized by CD8 T cells is crucial to expand the arsenal of immunotherapeutic treatments. Until now, most efforts focused on the identification of virus-specific epitopes, whereas immune responses directed against shared cellular tumor-specific antigens have not been evidenced. In this study, we measured T-cell responses against viral (n = 3) and tumor antigens (n = 47) from TILs derived from 21 MCC tumors. Virus-specific CD8 T-cell responses dominated MCC-specific immune responses, and we identified two new HLA-peptide complexes derived from the LT antigen, located in a region encompassing 3 previously identified epitopes. Finally, we show that MAGE-A3 antigen, frequently expressed by MCC tumors, was recognized by CD8 TILs from a virus-negative MCC tumor and thus could be a target for immunotherapy in this setting.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Carcinoma de Células de Merkel/inmunología , Neoplasias Cutáneas/inmunología , Animales , Antígenos de Neoplasias/inmunología , Antígenos Virales/inmunología , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA/inmunología , Humanos , Masculino , Proteínas de Neoplasias/inmunología
9.
Pediatr Diabetes ; 18(3): 178-187, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27174469

RESUMEN

Genome-wide association studies (GWAS) have identified more than 40 T1D loci associated with type 1 diabetes (T1D). How these polymorphisms interact with environmental factors to trigger T1D is unknown, but recent evidence suggests that epigenetic mechanisms could play a role. To begin to explore the contribution of epigenetics to T1D, we have examined DNA methylation in a pilot study of whole blood cells DNA from 10 young T1D patients and 10 young controls. Through the study of >900 000 CG loci across a diverse set of functionally relevant genomic regions using a custom DNA methylation array, we identified 250 T1D-differentially methylated region (DMR) at p < 0.05 and 1 DMR using next a permutation-based multiple testing correction method. This DMR is located in an imprinted region previously associated with T1D on the chromosome 14 that encompasses RTL1 gene and 2 miRNAs (miR136 and miR432). Using pyrosequencing-based bisulfite PCR, we replicated this association in a different and larger set of T1D patients and controls. DNA methylation at this DMR was inversely correlated with RTL1 gene expression and positively correlated with miR136 expression in human placentas. The DMR identified in this study presents suggestive evidence for altered methylation site in T1D and provide a promising new candidate gene. RTL1 is essential for placental permeability function in the mid-to-late fetal stages. We suggest that hypo-methylation could increase the fetal exposure to environmental factors in T1D susceptibility.


Asunto(s)
Desmetilación del ADN , Diabetes Mellitus Tipo 1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sitios Genéticos , MicroARNs/metabolismo , Proteínas Gestacionales/metabolismo , Regiones Promotoras Genéticas , Adulto , Células Sanguíneas/metabolismo , Niño , Estudios de Cohortes , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/genética , Epigénesis Genética , Femenino , Humanos , Masculino , Proyectos Piloto , Placenta/metabolismo , Embarazo , Proteínas Gestacionales/genética , Estudios Prospectivos , Bancos de Tejidos
10.
BMC Med ; 12: 104, 2014 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-24957655

RESUMEN

Palmitic acid, or hexadecanoic acid, a 16-carbon saturated fatty acid (FA), accounts for approximately 38% of the total circulating FA in lean or obese humans. In an article published in BMC Medicine, Hall et al. report that cultured islets from healthy donors, when exposed to palmitate, undergo changes in CpG methylation that are associated with modifications of expression in 290 genes. Their results provide a first look at the mechanisms used by the endocrine pancreas of humans to keep a durable genomic imprint from their exposure to FA that can influence gene expression and possibly cell phenotype in the long term. It is likely that such studies will help understand the epigenetic response of ß cells to a disturbed metabolic environment, especially one created by obesity.


Asunto(s)
Humanos
11.
Pharmacol Ther ; 242: 108347, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642389

RESUMEN

While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Pronóstico , Microambiente Tumoral
12.
Front Cell Dev Biol ; 11: 1185311, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287456

RESUMEN

Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.

13.
J Extracell Biol ; 2(8): e105, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939511

RESUMEN

Non-coding RNAs (ncRNAs) are important regulators of gene expression. They are expressed not only in cells, but also in cell-derived extracellular vesicles (EVs). The mechanisms controlling their loading and sorting remain poorly understood. Here, we investigated the impact of TP53 mutations on the non-coding RNA content of small melanoma EVs. After purification of small EVs from six different patient-derived melanoma cell lines, we characterized them by small RNA sequencing and lncRNA microarray analysis. We found that TP53 mutations are associated with a specific micro and long non-coding RNA content in small EVs. Then, we showed that long and small non-coding RNAs enriched in TP53 mutant small EVs share a common sequence motif, highly similar to the RNA-binding motif of Sam68, a protein interacting with hnRNP proteins. This protein thus may be an interesting partner of p53, involved in the expression and loading of the ncRNAs. To conclude, our data support the existence of cellular mechanisms associate with TP53 mutations which control the ncRNA content of small EVs in melanoma.

14.
Front Immunol ; 13: 925241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967413

RESUMEN

DCMU [N-(3,4-dichlorophenyl)-N-dimethylurea] or diuron is a widely used herbicide, which can cause adverse effects on human, especially on immune cells, due to their intrinsic properties and wide distribution. These cells are important for fighting not only against virus or bacteria but also against neoplastic cell development. We developed an approach that combines functional studies and miRNA and RNA sequencing data to evaluate the effects of DCMU on the human immune response against cancer, particularly the one carried out by CD8+ T cells. We found that DCMU modulates the expression of miRNA in a dose-dependent manner, leading to a specific pattern of gene expression and consequently to a diminished cytokine and granzyme B secretions. Using mimics or anti-miRs, we identified several miRNA, such as hsa-miR-3135b and hsa-miR-21-5p, that regulate these secretions. All these changes reduce the CD8+ T cells' cytotoxic activity directed against cancer cells, in vitro and in vivo in a zebrafish model. To conclude, our study suggests that DCMU reduces T-cell abilities, participating thus to the establishment of an environment conducive to cancer development.


Asunto(s)
Herbicidas , MicroARNs , Animales , Linfocitos T CD8-positivos/metabolismo , Diurona , Herbicidas/toxicidad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pez Cebra/genética
15.
Front Oncol ; 11: 744679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595122

RESUMEN

Prostate cancer is the most frequently diagnosed cancer in men and a leading cause of cancer-related death. In recent decades, the development of immunotherapies has resulted in great promise to cure metastatic disease. However, prostate cancer has failed to show any significant response, presumably due to its immunosuppressive microenvironment. There is therefore growing interest in combining immunotherapy with other therapies able to relieve the immunosuppressive microenvironment. Radiation therapy remains the mainstay treatment for prostate cancer patients, is known to exhibit immunomodulatory effects, depending on the dose, and is a potent inducer of immunogenic tumor cell death. Optimal doses of radiotherapy are thus expected to unleash the full potential of immunotherapy, improving primary target destruction with further hope of inducing immune-cell-mediated elimination of metastases at distance from the irradiated site. In this review, we summarize the current knowledge on both the tumor immune microenvironment in prostate cancer and the effects of radiotherapy on it, as well as on the use of immunotherapy. In addition, we discuss the utility to combine immunotherapy and radiotherapy to treat oligometastatic metastatic prostate cancer.

16.
Cancer Immunol Res ; 8(2): 255-267, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31857348

RESUMEN

MicroRNAs (miRNA), small noncoding RNAs that regulate gene expression, exist not only in cells but also in a variety of body fluids. These circulating miRNAs could enable intercellular communication. miRNAs are packaged in membrane-encapsulated vesicles, such as exosomes, or protected by RNA-binding proteins. Here, we report that miRNAs included in human melanoma exosomes regulate the tumor immune response. Using microscopy and flow cytometry, we demonstrate that CD8+ T cells internalize exosomes from different tumor types even if these cells do not internalize vesicles as readily as other immune cells. We explored the function of melanoma-derived exosomes in CD8+ T cells and showed that these exosomes downregulate T-cell responses through decreased T-cell receptor (TCR) signaling and diminished cytokine and granzyme B secretions. The result reduces the cells' cytotoxic activity. Using mimics, we found that miRNAs enriched in exosomes-such as Homo sapiens (hsa)-miR-3187-3p, hsa-miR-498, hsa-miR-122, hsa-miR149, and hsa-miR-181a/b-regulate TCR signaling and TNFα secretion. Our observations suggest that miRNAs in melanoma-derived exosomes aid tumor immune evasion and could be a therapeutic target.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Exosomas/genética , Melanoma/inmunología , MicroARNs/genética , Transducción de Señal , Neoplasias Cutáneas/inmunología , Escape del Tumor , Comunicación Celular , Línea Celular Tumoral , Células Cultivadas , Exosomas/inmunología , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , MicroARNs/inmunología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
17.
Sci Rep ; 10(1): 5900, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246006

RESUMEN

Peripheral CD4+CD8+ double positive (DP) T cells are a phenotypically and functionally heterogeneous population depending on their origin and pathologic context. We previously identified among tumour infiltrating lymphocytes in melanoma, a tumour-reactive MHC class-I restricted CD4lowCD8high DP αß T-cell subpopulation with CD4-like function. In this study, we used an in-depth comparative transriptomic analysis of intra-melanoma DP T cells and CD4 and CD8 single positive (SP) T cells, to better comprehend the origin of this DP phenotype, and define the transcriptomic signature of activated DP T cells. We observed that intra-melanoma DP T cells were transcriptome-wise closer to their CD8 SP T-cell counterparts in terms of number of genes differentially expressed (97 in common with CD8 SP T cells and 15 with CD4 SP T cells) but presented hallmarks of a transition to a CD4-like functional profile (CD40LG) with a decreased cytotoxic signature (KLRC1) in favour of an increased cytokine-receptor interaction signature (IL4, IL24, IL17A…). This unleashed CD4-like program could be the results of the observed unbalanced expression of the THPOK/Runx3 transcription factors in DP T cells. Overall, this study allow us to speculate that intra-melanoma DP T cells arise from CD8 SP T cells being reprogrammed to a helper function.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/inmunología , Neoplasias Cutáneas/inmunología , Subgrupos de Linfocitos T/inmunología , Transcriptoma/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Plasticidad de la Célula/genética , Plasticidad de la Célula/inmunología , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma/genética , Melanoma/secundario , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
18.
J Immunother Cancer ; 8(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32001504

RESUMEN

BACKGROUND: Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, PDCD1 editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments. METHODS: Here we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to edit PDCD1 gene in human effector memory CD8+ T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validated PDCD1 editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain's sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR. RESULTS: Here we demonstrated the feasibility to edit PDCD1 gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent on PDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model. CONCLUSION: The use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Melanoma/inmunología , Melanoma/terapia , Receptor de Muerte Celular Programada 1/deficiencia , Linfocitos T Citotóxicos/inmunología , Animales , Línea Celular Tumoral , Femenino , Edición Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Distribución Aleatoria , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Thorac Oncol ; 15(5): 827-842, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31945495

RESUMEN

INTRODUCTION: Oncolytic immunotherapy is based on the use of nonpathogenic replicative oncolytic viruses that infect and kill tumor cells exclusively. Recently, we found that the spontaneous oncolytic activity of the Schwarz strain of measles virus (MV) against human malignant pleural mesothelioma (MPM) depends on defects in the antiviral type I interferon (IFN-I) response in tumor cells. METHODS: In this study, we studied three independent human MPM bio-collections to identify the defects in the IFN-I responses in tumor cells. RESULTS: We show that the most frequent defect is the homozygous deletions (HDs) of all the 14 IFN-I genes (IFN-α and IFN-ß) that we found in more than half of MV-sensitive MPM cell lines. These HDs occur together with the HDs of the tumor suppressor gene CDKN2A also located in the 9p21.3 chromosome region. Therefore, the IFN-I-/- MPM cell lines develop a partial and weak IFN-I response when they are exposed to the virus compared with that of normal cells and MV-resistant MPM cell lines. This response consists of the expression of a restricted number of IFN-stimulated genes that do not depend on the presence of IFN-I. In addition, the IFN-I-/- MPM cell lines infected by MV also develop a pro-inflammatory response associated with stress of the endoplasmic reticulum. CONCLUSION: Our study emphasizes the link between HDs of IFN-I encoding genes and the CDKN2A gene in MPM and sensitivity to MV oncolytic immunotherapy.


Asunto(s)
Interferón Tipo I , Neoplasias Pulmonares , Mesotelioma , Viroterapia Oncolítica , Virus Oncolíticos , Línea Celular Tumoral , Homocigoto , Humanos , Interferón Tipo I/genética , Virus del Sarampión/genética , Mesotelioma/genética , Mesotelioma/terapia , Virus Oncolíticos/genética , Eliminación de Secuencia
20.
Horm Res ; 71(6): 331-5, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19506390

RESUMEN

CONTEXT: Twin and family studies indicate a significant heritability of pubertal timing and more specifically of age at menarche (AAM). OBJECTIVE: Test the association of AAM with common variants of three candidate genes suspected to have a prominent role in reproductive physiology: leptin (LEP), neuropeptide Y receptor 1 (NPY1R) and GPR54. DESIGN AND METHODS: We selected the -2459 LEP, the rs7687423 NPY1R and thers350132 GPR54 variants as the more common coding or regulatory variants (minor allelic frequency >0.10) in these gene regions. To avoid stratification problems that can impair association studies, we used the Q-TDT method based on allele transmission to evaluate the relationship of these variants with AAM in 245 healthy women from 107 families of European ancestry. RESULTS: We found no association of AAM with any of the studied variants. CONCLUSIONS: Keeping in mind that common variants do not recapitulate the whole genetic variation in a given gene region, this study indicates that the studied LEP, NPY1R and GPR54 variants do not have a major influence upon pubertal timing in Caucasian women. Effects of these genetic loci on age at menarche can definitively be excluded only through determination of extended haplotypes in a larger cohort.


Asunto(s)
Variación Genética , Leptina/genética , Menarquia/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido Y/genética , Adolescente , Niño , Femenino , Frecuencia de los Genes , Humanos , Receptores de Kisspeptina-1 , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA