RESUMEN
BACKGROUND: Atherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis. METHODS: Responses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet). RESULTS: En face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation. CONCLUSIONS: Endothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity.
Asunto(s)
Aterosclerosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Endoteliales , Ácidos Grasos , Obesidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Obesidad/metabolismo , Obesidad/genética , Células Cultivadas , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Porcinos , Masculino , Dieta Alta en Grasa , Endotelio Vascular/metabolismo , Endotelio Vascular/patologíaRESUMEN
Ankyrin repeat and single KH domain-containing protein 1 (ANKHD1) is a large, scaffolding protein composed of two stretches of ankyrin repeat domains that mediate protein-protein interactions and a KH domain that mediates RNA or single-stranded DNA binding. ANKHD1 interacts with proteins in several crucial signalling pathways, including receptor tyrosine kinase, JAK/STAT, mechanosensitive Hippo (YAP/TAZ), and p21. Studies into the role of ANKHD1 in cancer cell lines demonstrate a crucial role in driving uncontrolled cellular proliferation and growth, enhanced tumorigenicity, cell cycle progression through the S phase, and increased epithelial-to-mesenchymal transition. Furthermore, at a clinical level, the increased expression of ANKHD1 has been associated with greater tumour infiltration, increased metastasis, and larger tumours. Elevated ANKHD1 resulted in poorer prognosis, more aggressive growth, and a decrease in patient survival in numerous cancer types. This review aims to gather the current knowledge about ANKHD1 and explore its molecular properties and functions, focusing on the protein's role in cancer at both a cellular and clinical level.
Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Hiperplasia , Agresión , Repetición de Anquirina , División Celular , Proteínas de Unión al ARNRESUMEN
Endothelial cell (EC) sensing of fluid shear stress direction is a critical determinant of vascular health and disease. Unidirectional flow induces EC alignment and vascular homeostasis, whereas bidirectional flow has pathophysiological effects. ECs express several mechanoreceptors that respond to flow, but the mechanism for sensing shear stress direction is poorly understood. We determined, by using in vitro flow systems and magnetic tweezers, that ß1 integrin is a key sensor of force direction because it is activated by unidirectional, but not bidirectional, shearing forces. ß1 integrin activation by unidirectional force was amplified in ECs that were pre-sheared in the same direction, indicating that alignment and ß1 integrin activity has a feedforward interaction, which is a hallmark of system stability. En face staining and EC-specific genetic deletion studies in the murine aorta revealed that ß1 integrin is activated and is essential for EC alignment at sites of unidirectional flow but is not activated at sites of bidirectional flow. In summary, ß1 integrin sensing of unidirectional force is a key mechanism for decoding blood flow mechanics to promote vascular homeostasis.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Aorta/fisiología , Integrina beta1/metabolismo , Flujo Sanguíneo Regional/fisiología , Animales , Línea Celular , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Integrina beta1/genética , Mecanorreceptores/fisiología , Ratones , Ratones Noqueados , Estrés Fisiológico/fisiologíaRESUMEN
Cytokine receptors often act via the Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway to form a signalling cascade that is essential for processes such as haematopoiesis, immune responses and tissue homeostasis. In order to transduce ligand activation, cytokine receptors must dimerise. However, mechanisms regulating their dimerisation are poorly understood. In order to better understand the processes regulating cytokine receptor levels, and their activity and dimerisation, we analysed the highly conserved JAK/STAT pathway in Drosophila, which acts via a single receptor, known as Domeless. We performed a genome-wide RNAi screen in Drosophila cells, identifying MASK as a positive regulator of Domeless dimerisation and protein levels. We show that MASK is able to regulate receptor levels and JAK/STAT signalling both in vitro and in vivo We also show that its human homologue, ANKHD1, is also able to regulate JAK/STAT signalling and the levels of a subset of pathway receptors in human cells. Taken together, our results identify MASK as a novel regulator of cytokine receptor levels, and suggest functional conservation, which may have implications for human health.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Genoma de los Insectos , Interferencia de ARN , Receptores de Citocinas/genética , Receptores de Interleucina/química , Secuencias de Aminoácidos , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Unión Proteica , Estabilidad Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de SeñalRESUMEN
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the progressive growth of cysts but it is also accompanied by diffuse tissue scarring or fibrosis. A number of recent studies have been published in this area, yet the role of fibrosis in ADPKD remains controversial. Here, we will discuss the stages of fibrosis progression in ADPKD, and how these compare with other common kidney diseases. We will also provide a detailed overview of some key mechanistic pathways to fibrosis in the polycystic kidney. Specifically, the role of the 'chronic hypoxia hypothesis', persistent inflammation, Transforming Growth Factor beta (TGFß), Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and microRNAs will be examined. Evidence for and against a pathogenic role of extracellular matrix during ADPKD disease progression will be provided.
Asunto(s)
Fibrosis/genética , Quinasas Janus/genética , MicroARNs/genética , Riñón Poliquístico Autosómico Dominante/genética , Factor de Crecimiento Transformador beta/genética , Progresión de la Enfermedad , Fibrosis/complicaciones , Fibrosis/patología , Humanos , Inflamación/complicaciones , Inflamación/genética , Inflamación/patología , Riñón/patología , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/patología , Factores de Transcripción STATRESUMEN
Clear cell renal cell carcinoma (ccRCC) represents the most common kidney cancer worldwide. Increased cell proliferation associated with abnormal microRNA (miRNA) regulation are hallmarks of carcinogenesis. Ankyrin repeat and single KH domain 1 (ANKHD1) is a highly conserved protein found to interact with core cancer pathways in Drosophila; however, its involvement in RCC is completely unexplored. Quantitative PCR studies coupled with large-scale genomics data sets demonstrated that ANKHD1 is significantly up-regulated in kidneys of RCC patients when compared with healthy controls. Cell cycle analysis revealed that ANKHD1 is an essential factor for RCC cell division. To understand the molecular mechanism(s) utilized by ANKHD1 to drive proliferation, we performed bioinformatics analyses that revealed that ANKHD1 contains a putative miRNA-binding motif. We screened 48 miRNAs with tumor-enhancing or -suppressing activities and found that ANKHD1 binds to and regulates three tumor-suppressing miRNAs (i.e. miR-29a, miR-205, and miR-196a). RNA-immunoprecipitation assays demonstrated that ANKHD1 physically interacts with its target miRNAs via a single K-homology domain, located in the C terminus of the protein. Functionally, we discovered that ANKHD1 positively drives ccRCC cell mitosis via binding to and suppressing mainly miR-29a and to a lesser degree via miR-196a/205, leading to up-regulation in proliferative genes such as CCDN1. Collectively, these data identify ANKHD1 as a new regulator of ccRCC proliferation via specific miRNA interactions.
Asunto(s)
Carcinoma de Células Renales/patología , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Sitios de Unión , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Estudios de Casos y Controles , Movimiento Celular , Perfilación de la Expresión Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Pronóstico , Proteínas de Unión al ARN/genética , Células Tumorales CultivadasRESUMEN
OBJECTIVE: Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. APPROACH AND RESULTS: Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E-defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. CONCLUSIONS: Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes.
Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inflamación/metabolismo , Mecanotransducción Celular , Placa Aterosclerótica , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Endopeptidasas/metabolismo , Células Endoteliales/patología , Inducción Enzimática , Femenino , Predisposición Genética a la Enfermedad , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Oxígeno/metabolismo , Fenotipo , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Flujo Sanguíneo Regional , Estrés Mecánico , Sus scrofa , Factores de Tiempo , Transfección , Ubiquitinación , Regulación hacia ArribaRESUMEN
Autosomal dominant polycystic kidney disease (ADPKD) leads to renal failure. The hallmark of ADPKD is increased epithelial proliferation, which has been proposed to be due to atypical signaling including abnormal JAK-STAT activity. However, the relative contribution of JAK-STAT family members in promoting proliferation in ADPKD is unknown. Here, we present siRNA JAK-STAT-focused screens discovering a previously unknown proliferative role for multiple JAK-STAT components (including STAT1, STAT2, STAT4, STAT5a, and STAT5b). Amongst these, we selected to study the growth hormone/growth hormone receptor/STAT5-axis because of its known role as a regulator of growth in nonrenal tissues. Loss of STAT5 function, facilitated by pharmacological inhibition or siRNAs, significantly reduced proliferation with an associated reduction in cyst growth in vitro. To study whether STAT5 is abnormally activated in vivo, we analyzed its expression using two independent mouse models of ADPKD. STAT5 was nuclear, thus activated, in renal epithelial cyst lining cells in both models. To test whether forced activation of STAT5 can modulate proliferation of renal cells in vivo, irrespective of the Pkd1 status, we overexpressed growth hormone. These mice showed increased STAT5 activity in renal epithelial cells, which correlated with de novo expression of cyclin D1, a STAT5 target gene. Chromatin immunoprecipitation experiments revealed that STAT5 transcriptionally activated cyclin D1 in a growth hormone-dependent fashion, thus providing a mechanism into how STAT5 enhances proliferation. Finally, we provide evidence of elevated serum growth hormone in Pkd1 mutant mice. Thus, the growth hormone/STAT5 signaling axis is a novel therapeutic target in ADPKD.
Asunto(s)
Proliferación Celular , Células Epiteliales/metabolismo , Riñón/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Factor de Transcripción STAT5/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Genotipo , Hormona del Crecimiento/genética , Hormona del Crecimiento/metabolismo , Humanos , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/genética , Quinasas Janus/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Ratones Transgénicos , Fenotipo , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Factor de Transcripción STAT5/antagonistas & inhibidores , Factor de Transcripción STAT5/genética , Transducción de Señal , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genéticaRESUMEN
RATIONALE: Hypoxia followed by reoxygenation promotes inflammation by activating nuclear factor κB transcription factors in endothelial cells (ECs). This process involves modification of the signaling intermediary tumor necrosis factor receptor-associated factor 6 with polyubiquitin chains. Thus, cellular mechanisms that suppress tumor necrosis factor receptor-associated factor 6 ubiquitination are potential therapeutic targets to reduce inflammation in hypoxic tissues. OBJECTIVE: In this study, we tested the hypothesis that endothelial activation in response to hypoxia-reoxygenation can be influenced by Cezanne, a deubiquitinating enzyme that cleaves ubiquitin from specific modified proteins. METHODS AND RESULTS: Studies of cultured ECs demonstrated that hypoxia (1% oxygen) induced Cezanne via p38 mitogen-activated protein kinase-dependent transcriptional and post-transcriptional mechanisms. Hypoxia-reoxygenation had minimal effects on proinflammatory signaling in unmanipulated ECs but significantly enhanced Lys63 polyubiquitination of tumor necrosis factor receptor-associated factor 6, activation of nuclear factor κB, and expression of inflammatory genes after silencing of Cezanne. Thus, although hypoxia primed cells for inflammatory activation, it simultaneously induced Cezanne, which impeded signaling to nuclear factor κB by suppressing tumor necrosis factor receptor-associated factor 6 ubiquitination. Similarly, ischemia induced Cezanne in the murine kidney in vascular ECs, glomerular ECs, podocytes, and epithelial cells, and genetic deletion of Cezanne enhanced renal inflammation and injury in murine kidneys exposed to ischemia followed by reperfusion. CONCLUSIONS: We conclude that inflammatory responses to ischemia are controlled by a balance between ubiquitination and deubiquitination, and that Cezanne is a key regulator of this process. Our observations have important implications for therapeutic targeting of inflammation and injury during ischemia-reperfusion.
Asunto(s)
Endopeptidasas/metabolismo , Células Endoteliales/enzimología , Inflamación/prevención & control , Riñón/irrigación sanguínea , Daño por Reperfusión/enzimología , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Endopeptidasas/deficiencia , Endopeptidasas/genética , Células Endoteliales/inmunología , Humanos , Inflamación/enzimología , Inflamación/genética , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Oxígeno/metabolismo , Interferencia de ARN , Ratas , Ratas Endogámicas F344 , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Factores de Tiempo , Transcripción Genética , Transfección , Ubiquitinación , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoAsunto(s)
Investigación Biomédica , Cardiología , Enfermedades Cardiovasculares , Congresos como Asunto , Sociedades Médicas , Animales , Distinciones y Premios , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/terapia , Humanos , Reino UnidoRESUMEN
BACKGROUND AND AIMS: Physiological shear stress promotes vascular homeostasis by inducing protective molecules in endothelial cells (EC). However, physiological shear stress has been linked to atherosclerosis progression in some individuals with heightened cardiovascular risk. To address this apparent paradox, we hypothesized that diseased arteries may exhibit reduced responsiveness to the protective effects of physiological shear stress. Consequently, we compared the transcriptome of EC exposed to physiological shear stress in healthy arteries versus atherosclerotic conditions. METHODS: Employing 3D light sheet imaging and computational fluid dynamics, we identified NOS3 as a marker of physiological shear stress in both healthy and atherosclerotic murine arteries. Single-cell RNA sequencing was performed on EC from healthy (C57BL/6) mice, mildly diseased (Apoe-/- normal diet) mice, and highly diseased (Apoe-/- high fat diet) mice. The transcriptomes of Nos3high cells (exposed to physiological shear stress) were compared among the groups. RESULTS: Nos3high EC were associated with several markers of physiological shear stress in healthy arteries. Clustering of Nos3high EC revealed 8 different EC subsets that varied in proportion between healthy and diseased arteries. Cluster-specific nested functional enrichment of gene ontology terms revealed that Nos3high EC in diseased arteries were enriched for inflammatory and apoptotic gene expression. These alterations were accompanied by changes in several mechanoreceptors, including the atheroprotective factor KLK10, which was enriched in Nos3high EC in healthy arteries but markedly reduced in severely diseased arteries. CONCLUSIONS: Physiological shear stress is uncoupled from atheroprotective KLK10 within atherosclerotic plaques. This sheds light on the complex interplay between shear stress, endothelial function, and the progression of atherosclerosis in individuals at risk of cardiovascular complications.
RESUMEN
Chronic kidney disease (CKD) has a significant impact on the life of patients undergoing chronic periodic hemodialysis. It negatively affects their social, economic and family status, and particularly their psychological well-being. The aim of this study was to investigate the perception of the quality of life (QoL) and psychological burden of patients undergoing hemodialysis. A cross-sectional study was conducted with 63 patients. Τhe majority were men (63.5%), and the mean age of the patients was 66.7 years (±12.9) with 61.9% aged 65-89 years. Data collection was performed in 2021 using the Hospital Anxiety and Depression Scale (HADS) and the Kidney Disease and Quality of Life-Short Form (KDQOL-SF™) research tools, and their relationships were assessed using parametric and non-parametric methods. Moderate to mild levels of Anxiety and Depression were found. Physical and Mental Composite Scores were mild to moderate, with the Mental Composite Score being significantly higher (p < 0.05). Anxiety and Depression were significantly correlated with lower QoL (p < 0.05), while a higher educational level was correlated with lower Depression Symptom Levels and higher QoL for Disease Symptoms, Disease Effects, Physical Functioning, Vitality and Overall Health (p < 0.05). A higher number of years of hemodialysis was correlated with lower levels of Anxiety and higher levels of Quality of Sleep (p < 0.05). Ease of Access to the Hemodialysis Unit was correlated with lower levels of Social Support (p < 0.05). The highest Mental Composite Scores were also correlated with a higher level of education, with patients living in urban areas, and with a higher monthly income (p < 0.05). Patients with moderate or severe levels of Anxiety and Depression had a lower QoL in the Physical and Mental Composite Scores, indicating their dependence on the appropriate medical, nursing and social environment in order to attain higher levels of well-being, leading to the improvement of patients' health. This study was not registered.
RESUMEN
BACKGROUND: Numerous microRNAs (miRs), small RNAs targeting several pathways, have been implicated in the development of Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most common genetic cause of Chronic Kidney Disease. The hallmark of ADPKD is tissue overgrowth and hyperproliferation, eventually leading to kidney failure. SCOPE OF THE REVIEW: Many miRs are dysregulated in disease, yet the intracellular pathways regulated by these are less well described in ADPKD. Here, I summarise all the differentially expressed miRs and highlight the top miR-regulated cellular driver of ADPKD. MAJOR CONCLUSIONS: Literature review has identified 35 abnormally expressed miRs in ADPKD. By performing bioinformatics analysis of their target genes I present 10 key intracellular pathways that drive ADPKD progression. The top key drivers are divided into three main areas: (i) hyperproliferation and the role of JAK/STAT and PI3K pathways (ii) DNA damage and (iii) inflammation and NFκB. GENERAL SIGNIFICANCE: The description of the 10 top cellular drivers of ADPKD, derived by analysis of miR signatures, is of paramount importance in better understanding the key processes resulting in pathophysiological changes that underlie disease.
Asunto(s)
MicroARNs , Riñón Poliquístico Autosómico Dominante , Biología Computacional , Femenino , Humanos , Masculino , MicroARNs/genética , Fosfatidilinositol 3-Quinasas , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismoRESUMEN
The current study aimed to investigate how parents of children, adolescents, and young adults with DM1 perceived quality of life and psychological burden during the lockdown period of COVID-19. A cross-sectional study was carried out on 110 parents in Greece in spring 2021. Perceived quality of life was measured using the Parent Diabetes Distress Scale, and psychological burden was measured using the Spielberger State/Trait Anxiety Inventory, and both were assessed with correlational analysis. Overall, 79.1% of the parents were females ,while the mean age of all was 44.4 years (±5.8). PDDS was found to be moderate (mean 2.42 ± 0.76): 63.6% of respondents had moderate/high distress. The highest mean score was for Teen Management Distress and the lowest for Healthcare Team (3.02 vs. 1.49, p < 0.001). STAI was found to be moderate to high, with a higher mean score for state versus trait anxiety (49.8 vs. 48.0, p = 0.006). Increased distress or poorer parents' quality of life was related with the highest number of hyperglycemic episodes (ß = 0.25, p = 0.002), the fewest hypoglycemic episodes (ß = −0.18, p = 0.024), and the highest parental trait anxiety (ß = 0.04, p < 0.001). Parents were found with moderate-to-high distress and anxiety, and their correlation also shows that there is an urgent need for suitable education of parents on managing the disease to improve quality of life and eliminate health risks to all involved.
RESUMEN
Endothelial cell (EC) sensing of disturbed blood flow triggers atherosclerosis, a disease of arteries that causes heart attack and stroke, through poorly defined mechanisms. The Notch pathway plays a central role in blood vessel growth and homeostasis, but its potential role in sensing of disturbed flow has not been previously studied. Here, we show using porcine and murine arteries and cultured human coronary artery EC that disturbed flow activates the JAG1-NOTCH4 signaling pathway. Light-sheet imaging revealed enrichment of JAG1 and NOTCH4 in EC of atherosclerotic plaques, and EC-specific genetic deletion of Jag1 (Jag1ECKO) demonstrated that Jag1 promotes atherosclerosis at sites of disturbed flow. Mechanistically, single-cell RNA sequencing in Jag1ECKO mice demonstrated that Jag1 suppresses subsets of ECs that proliferate and migrate. We conclude that JAG1-NOTCH4 sensing of disturbed flow enhances atherosclerosis susceptibility by regulating EC heterogeneity and that therapeutic targeting of this pathway may treat atherosclerosis.
Asunto(s)
Aterosclerosis , Proteína Jagged-1 , Placa Aterosclerótica , Receptor Notch4 , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones , Placa Aterosclerótica/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Transducción de Señal , PorcinosRESUMEN
Epithelial to mesenchymal transition (EMT) is a well established biological process in metazoan embryological development. Over the past 15 years, investigators have sought to establish whether EMT also occurs in renal epithelial cells, following kidney injury, and to show that the mesenchymal cells formed could give rise to myofibroblasts which populate the renal interstitium, causing fibrosis within it. There is no doubt that proximal tubular epithelial cells (PTECs) can undergo EMT in vitro in response to TGFß-1 and other inflammatory stimuli. Moreover, the results of experiments with animal models of renal fibrosis and examination of biopsies from patients with chronic kidney disease have lent support to the hypothesis that EMT occurs in vivo. This review discusses some of the key evidence underlying that idea and summarises recent advances in understanding the molecular mechanism underlying the process. Early experiments using mice which were genetically engineered to mark PTECs with the LacZ gene to trace their fate following kidney injury provided evidence supporting the occurrence of EMT. Recently, however, cell lineage tracking experiments using the red fluorescent protein (RFP) as a high-resolution marker for cells of renal epithelial origin did not replicate this result; the interstitial space following kidney injury was devoid of RFP expressing cells, leading the investigators to reject the renal EMT hypothesis.
Asunto(s)
Diferenciación Celular , Células Epiteliales/patología , Riñón/patología , Mesodermo/patología , Animales , Adhesión Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Humanos , RatonesRESUMEN
Incorporation of L- or D-Tic into position 7 of oxytocin (OT) and its deamino analogue ([Mpa(1)]OT) resulted in four analogues, [L-Tic(7)]OT (1), [D-Tic(7)]OT (2), [Mpa(1),L-Tic(7)]OT (3) and [Mpa(1),D-Tic(7)]OT (4). Their biological properties were described by Fragiadaki et al. (Eur J Med Chem 42:799-806, 2007). Their NMR study (NOESY, TOCSY, (1)H-(13)C HSQC spectra) is presented here. Analogues 1, 3 and 4 showed partial agonistic activity, analogue 2 was pure antagonist, suggesting that a cis conformation between residues 6 and 7 of the molecule does not result in antagonistic activity. However, the reduction in agonistic activity of analogues 1, 3 and 4 in comparison to oxytocin is consistent with the reduction of the trans conformation form. Binding affinity for the human oxytocin receptor with IC(50) value of 130, 730, 103, and 380 nM for peptides 1, 2, 3, and 4, respectively, showed lower affinity in the case of D analogues. Deamination slightly increased the affinity. The existence of both cis and trans configurations of the Cys(6)-D-Tic(7) bond is supported by observation of two sets of cross-peaks for (1)H and (13)C nuclei for most of the residues of the peptide not only in NOESY and TOCSY but also in (1)H-(13)C HSQC spectra. The MS and HPLC indicate the presence of a single molecule/peptide, and NMR data thus suggest that this second set of peaks is due to the cis conformation.
Asunto(s)
Oxitocina/análogos & derivados , Tetrahidroisoquinolinas/química , Secuencia de Aminoácidos , Modelos Moleculares , Conformación Molecular , Resonancia Magnética Nuclear Biomolecular , Oxitocina/síntesis químicaRESUMEN
Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors, including diabetes. Diabetes is associated with either an insulin deficiency in its juvenile form or with insulin resistance and obesity in Type 2 diabetes mellitus, and the latter is clustered with other comorbidities to define the metabolic syndrome. Diabetes and metabolic syndrome are complex pathologies and are associated with cardiovascular risk via vascular inflammation and other mechanisms. Several transcription factors are activated upon diabetes-driven endothelial dysfunction and drive the progression of atherosclerosis. In particular, the hypoxia-inducible factor (HIF) transcription factor family is a master regulator of endothelial biology and is raising interest in the field of atherosclerosis. In this review, we will present an overview of studies contributing to the understanding of diabetes-driven atherosclerosis, integrating the role of HIF in this disease with the knowledge of its functions in metabolic syndrome and diabetic scenario.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Aterosclerosis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotelio Vascular/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Secretoras de Insulina/metabolismo , Síndrome Metabólico/metabolismo , Proteínas Represoras/metabolismo , Animales , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Glucemia/metabolismo , Hipoxia de la Célula , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Endotelio Vascular/patología , Humanos , Resistencia a la Insulina , Células Secretoras de Insulina/patología , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/epidemiología , Factores de Riesgo , Transducción de SeñalRESUMEN
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFß, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.