Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 566(7745): 503-508, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30787438

RESUMEN

The grey matter is a central target of pathological processes in neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. The grey matter is often also affected in multiple sclerosis, an autoimmune disease of the central nervous system. The mechanisms that underlie grey matter inflammation and degeneration in multiple sclerosis are not well understood. Here we show that, in Lewis rats, T cells directed against the neuronal protein ß-synuclein specifically invade the grey matter and that this is accompanied by the presentation of multifaceted clinical disease. The expression pattern of ß-synuclein induces the local activation of these T cells and, therefore, determined inflammatory priming of the tissue and targeted recruitment of immune cells. The resulting inflammation led to significant changes in the grey matter, which ranged from gliosis and neuronal destruction to brain atrophy. In humans, ß-synuclein-specific T cells were enriched in patients with chronic-progressive multiple sclerosis. These findings reveal a previously unrecognized role of ß-synuclein in provoking T-cell-mediated pathology of the central nervous system.


Asunto(s)
Sustancia Gris/inmunología , Sustancia Gris/patología , Esclerosis Múltiple Crónica Progresiva/inmunología , Esclerosis Múltiple Crónica Progresiva/patología , Linfocitos T/inmunología , Sinucleína beta/inmunología , Animales , Encéfalo/patología , Movimiento Celular/inmunología , Femenino , Regulación de la Expresión Génica , Gliosis/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Activación de Linfocitos , Recuento de Linfocitos , Masculino , Esclerosis Múltiple Crónica Progresiva/sangre , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Ratas , Ratas Endogámicas Lew , Linfocitos T/metabolismo , Linfocitos T/patología , Sinucleína beta/análisis , Sinucleína beta/genética , Sinucleína beta/metabolismo
2.
Nature ; 567(7749): E15, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30867589

RESUMEN

In this Article, owing to an error during the production process, the y-axis label of Fig. 2c should read "Number of Tß-syn cells" rather than "Number of T1ß-syn cells" and the left and right panels of Fig. 4 should be labelled 'a' and 'b', respectively. These errors have been corrected online.

3.
Ann Surg ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38328992

RESUMEN

OBJECTIVE: This study aims to assess morphological and functional postoperative changes after open or minimally invasive (MIS) repair of esophageal atresia (EA) compared to healthy controls by thoracic real-time MRI. SUMMARY BACKGROUND DATA: Musculoskeletal deformities and pulmonary morbidity are common in children after EA repair. The real-time MRI is a novel technique that provides ultrafast, high-quality images during spontaneous breathing, without sedation even in young children. METHODS: Children aged 3-18 years were prospectively examined with a 3 Tesla MRI. Musculoskeletal deformities, static thoracic cross-sectional areas (CSA) at three different levels and lung volumes, as well as dynamic right-to-left ratio of CSA of hemithoraces and lung volumes during forced breathing were evaluated. RESULTS: 72 children (42 open, 8 MIS, 22 controls) were recruited. In the EA group, rib fusions and adhesions (78%, P<0.01) and scoliosis (15%, P=0.32) were found after thoracotomy, but not after MIS. Mean right-to-left ratio of CSA and lung volumes were lower after EA repair compared to controls (P <0.05), indicating impaired thoracic and lung development. The number of thoracotomies was a significant risk factor for smaller thoracic volumes (P<0.05). CONCLUSIONS: For the first time, morphological changes and thoracic motility after EA repair were visualized by dynamic real-time MRI. Children after EA repair show decreased right-sided thoracic and lung development compared to controls. Open repair leads to significantly more musculoskeletal deformities. This study emphasizes that musculoskeletal morbidity following a thoracotomy in infancy is high.

4.
Childs Nerv Syst ; 40(5): 1377-1388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38206441

RESUMEN

PURPOSE: In vivo measurements of CSF and venous flow using real-time phase-contrast (RT-PC) MRI facilitate new insights into the dynamics and physiology of both fluid systems. In clinical practice, however, use of RT-PC MRI is still limited. Because many forms of hydrocephalus manifest in infancy and childhood, it is a prerequisite to investigate normal flow parameters during this period to assess pathologies of CSF circulation. This study aims to establish reference values of CSF and venous flow in healthy subjects using RT-PC MRI and to determine their age dependency. METHODS: RT-PC MRI was performed in 44 healthy volunteers (20 females, age 5-40 years). CSF flow was quantified at the aqueduct (Aqd), cervical (C3) and lumbar (L3) spinal levels. Venous flow measurements comprised epidural veins, internal jugular veins and inferior vena cava. Parameters analyzed were peak velocity, net flow, pulsatility, and area of region of interest (ROI). STATISTICAL TESTS: linear regression, student's t-test and analysis of variance (ANOVA). RESULTS: In adults volunteers, no significant changes in flow parameters were observed. In contrast, pediatric subjects exhibited a significant age-dependent decrease of CSF net flow and pulsatility in Aqd, C3 and L3. Several venous flow parameters decreased significantly over age at C3 and changed more variably at L3. CONCLUSION: Flow parameters varies depending on anatomical location and age. We established changes of brain and spinal fluid dynamics over an age range from 5-40 years. The application of RT-PC MRI in clinical care may improve our understanding of CSF flow pathology in individual patients.


Asunto(s)
Ventrículos Cerebrales , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Niño , Adolescente , Adulto Joven , Preescolar , Acueducto del Mesencéfalo , Encéfalo/irrigación sanguínea , Hemodinámica , Líquido Cefalorraquídeo/fisiología
5.
Pediatr Radiol ; 54(7): 1168-1179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38687346

RESUMEN

BACKGROUND: Idiopathic scoliosis is common in adolescence. Due to the rapid growth of the spine, it must be monitored closely with radiographs to ensure timely intervention when therapy is needed. As these radiographs continue into young adulthood, patients are repeatedly exposed to ionizing radiation. OBJECTIVE: This study aimed to investigate whether real-time magnetic resonance imaging (MRI) is equivalent to conventional radiography in juvenile idiopathic scoliosis for determining curvature, rotation and the Risser stage. Additionally, the time requirement should be quantified. MATERIALS AND METHODS: Children with idiopathic scoliosis who had postero-anterior whole-spine radiography for clinical indications were included in this prospective study. A real-time spine MRI was performed at 3 tesla in the supine position, capturing images in both the coronal and sagittal planes. The scoliosis was assessed using Cobb angle, rotation was evaluated based on Nash and Moe criteria, and the Risser stage was determined for each modality. The correlations between modalities and a correction factor for the Cobb angle between the standing and supine position were calculated. RESULTS: A total of 33 children (aged 5-17 years), who met the inclusion criteria, were recruited. The Cobb angle (R2 = 0.972; P < 0.01) was positively correlated with a correction factor of 1.07 between modalities. Additionally, the degree of rotation (R2 = 0.92; P < 0.01) and the Risser stage (R2 = 0.93; P < 0.01) demonstrated a strong correlation. CONCLUSION: Real-time MRI is equivalent to conventional radiography in determining baseline parameters. Furthermore, it is radiation-free and less time-consuming.


Asunto(s)
Imagen por Resonancia Magnética , Escoliosis , Humanos , Escoliosis/diagnóstico por imagen , Adolescente , Niño , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Preescolar , Estudios Prospectivos , Radiografía/métodos
6.
Skeletal Radiol ; 53(4): 791-800, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37819279

RESUMEN

OBJECTIVE: Clinical-standard MRI is the imaging modality of choice for the wrist, yet limited to static evaluation, thereby potentially missing dynamic instability patterns. We aimed to investigate the clinical benefit of (dynamic) real-time MRI, complemented by automatic analysis, in patients with complete or partial scapholunate ligament (SLL) tears. MATERIAL AND METHODS: Both wrists of ten patients with unilateral SLL tears (six partial, four complete tears) as diagnosed by clinical-standard MRI were imaged during continuous active radioulnar motion using a 1.5-T MRI scanner in combination with a custom-made motion device. Following automatic segmentation of the wrist, the scapholunate and lunotriquetral joint widths were analyzed across the entire range of motion (ROM). Mixed-effects model analysis of variance (ANOVA) followed by Tukey's posthoc test and two-way ANOVA were used for statistical analysis. RESULTS: With the increasing extent of SLL tear, the scapholunate joint widths in injured wrists were significantly larger over the entire ROM compared to those of the contralateral healthy wrists (p<0.001). Differences between partial and complete tears were most pronounced at 5°-15° ulnar abduction (p<0.001). Motion patterns and trajectories were altered. Complete SLL deficiency resulted in complex alterations of the lunotriquetral joint widths. CONCLUSION: Real-time MRI may improve the functional diagnosis of SLL insufficiency and aid therapeutic decision-making by revealing dynamic forms of dissociative instability within the proximal carpus. Static MRI best differentiates SLL-injured wrists at 5°-15° of ulnar abduction.


Asunto(s)
Articulaciones del Carpo , Inestabilidad de la Articulación , Traumatismos de la Muñeca , Humanos , Articulación de la Muñeca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Articulaciones del Carpo/diagnóstico por imagen , Ligamentos Articulares/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Inestabilidad de la Articulación/diagnóstico por imagen , Traumatismos de la Muñeca/diagnóstico por imagen
7.
Eur Radiol ; 33(7): 4580-4588, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36520178

RESUMEN

OBJECTIVES: Depositions of linear gadolinium-based MRI contrast agents are readily visible in T1-weighted MRIs of certain brain regions in both adults and children. Macrocyclic contrast agents such as gadobutrol have so far escaped detection by qualitative MRI in children. This study aimed to assess whether there is evidence for deposition of gadobutrol in children using quantitative T1 mapping. METHODS: This retrospective study included patients, naive to other gadolinium-based contrast agents than gadobutrol, who had received gadobutrol as part of a clinically indicated MRI. For each patient, T1 relaxation times at 3 T were measured using single-shot T1 mapping at two time points. In each of six brain regions, age-adjusted T1 relaxation times were correlated with a number of previous gadobutrol administrations. To combine interindividual, cross-sectional effects with intraindividual, longitudinal effects, both linear mixed model and generalized additive mixed model were applied. RESULTS: One hundred four examinations of 52 children (age median 11.4, IQR 6.3-15, 26 female) with a median of 7 doses of gadobutrol in the history of their neurological or neurooncological disease were included. After correction for age and indeterminate disease-related effects to T1 time, a negative correlation of T1 time with the number of gadobutrol doses administered was observed in both mixed models in the putamen (beta - 1.65, p = .03) and globus pallidus (beta - 1.98, p = .012) CONCLUSIONS: The results indicate that in children, gadobutrol is deposited in the globus pallidus and putamen. KEY POINTS: • Previous gadobutrol administration correlates with reduced T1 relaxation times in the globus pallidus and putamen in children. • This decreased T1 might be caused by gadobutrol retention within these gray-matter nuclei.


Asunto(s)
Medios de Contraste , Compuestos Organometálicos , Adulto , Humanos , Niño , Femenino , Medios de Contraste/farmacología , Estudios Retrospectivos , Gadolinio , Estudios Transversales , Núcleos Cerebelosos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen
8.
Eur Radiol ; 33(3): 2128-2135, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36307555

RESUMEN

OBJECTIVES: The breathing phase for the determination of thoracic indices in patients with pectus excavatum is not standardized. The aim of this study was to identify the best period for reliable assessments of morphologic indices by dynamic observations of the chest wall using real-time MRI. METHODS: In this prospective study, patients with pectus excavatum underwent morphologic evaluation by real-time MRI at 3 T between January 2020 and June 2021. The Haller index (HI), correction index (CI), modified asymmetry index (AI), and modified eccentricity index (EI) were determined during free, quiet, and forced breathing respectively. Breathing-related differences in the thoracic indices were analyzed with the Wilcoxon signed-rank test. Motion of the anterior chest wall was analyzed as well. RESULTS: A total of 56 patients (11 females and 45 males, median age 15.4 years, interquartile range 14.3-16.9) were included. In quiet expiration, the median HI in the cohort equaled 5.7 (4.5-7.2). The median absolute differences (Δ) in the thoracic indices between peak inspiration and peak expiration were ΔHI = 1.1 (0.7-1.6, p < .001), ΔCI = 4.8% (1.3-7.5%, p < .001), ΔAI = 3.0% (1.0-5.0%, p < .001), and ΔEI = 8.0% (3.0-14.0%, p < .05). The indices varied significantly during different inspiratory phases, but not during expiration (p > .05 each). Furthermore, the dynamic evaluation revealed three distinctive movement patterns of the funnel chest. CONCLUSIONS: Real-time MRI reveals patterns of chest wall motion and indicate that thoracic indices of pectus excavatum should be assessed in the end-expiratory phase of quiet expiration. KEY POINTS: • The thoracic indices in patients with pectus excavatum depend on the breathing phase. • Quiet expiration represents the best breathing phase for determining thoracic indices. • Real-time MRI can identify different chest wall motion patterns in pectus excavatum.


Asunto(s)
Tórax en Embudo , Masculino , Femenino , Humanos , Adolescente , Tórax en Embudo/diagnóstico por imagen , Estudios Prospectivos , Tórax , Imagen por Resonancia Magnética , Movimiento (Física)
9.
Eur J Pediatr ; 182(8): 3405-3417, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37249681

RESUMEN

Real-time MRI (rt-MRI) in children is a new imaging technique that combines the advantages of US - at frame rates of up to 50 images per second - with the quality and features of MRI. Although still subject of research, it has become a standard tool in the diagnostic portfolio of two pediatric radiology departments in Germany. Based on ultrashort acquisition times, any detrimental effects of macroscopic movements of the child and the physiological movements of the organs are negligible. Especially in pediatric brain imaging, rt-MRI has already proven its value. With suitable indications, rt-MRI can reduce anesthesia and sedation examinations in children below 6 years of age by 40% due to its very short examination time and its robustness to motion. There is a high level of acceptance among parents and referrers when diagnostic possibilities and limitations are communicated correctly. CONCLUSION: Completely new diagnostic possibilities arise in the imaging of the moving lung, the beating heart, joint movements, and speaking and swallowing, as demonstrated in this video-backed review. WHAT IS KNOWN: • MRI in moving children has been burdened with severe artifacts. • Gross motion usually has to be handled by sedation and periodic motion of the heart and lungs has to be compensated with time-consuming techniques until now. WHAT IS NEW: • Real-time MRI allows image acquisition with up to 50 frames per second similar to ultrasound frame rate. • Real-time MRI proofs to be very promising for imaging children, reducing examination time and sedation rate drastically.


Asunto(s)
Imagen por Resonancia Magnética , Radiología , Niño , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Movimiento (Física) , Movimiento
10.
Pediatr Radiol ; 53(1): 12-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35836015

RESUMEN

BACKGROUND: Real-time magnetic resonance imaging (MRI) based on a fast low-angle shot technique 2.0 (FLASH 2.0) is highly effective against artifacts caused due to the bulk and pulmonary and cardiac motions of the patient. However, to date, there are no reports on the application of this innovative technique to pediatric lung MRI. OBJECTIVE: This study aimed to identify the limits of resolution and image quality of real-time lung MRI in children and to assess the types and minimal size of lesions with these new sequences. MATERIALS AND METHODS: In this retrospective study, pathological lung findings in 87 children were classified into 6 subgroups, as detected on conventional MRI: metastases and tumors, consolidation, scars, hyperinflation, interstitial pathology and bronchiectasis. Subsequently, the findings were grouped according to size (4-6 mm, 7-9 mm and ≥ 10 mm) and evaluated for visual delineation of the findings (0 = not visible, 1 = hardly visible and 2 = well visualized). RESULTS: Real-time MRI allows for diagnostic, artifact-free thorax images to be obtained, regardless of patient movements. The delineation of findings strongly correlates with the size of the pathology. Metastases, consolidation and scars were visible at 100% when larger than 9 mm. In the 7-9 mm subgroup, the visibility was 83% for metastases, 88% for consolidation and 100% for scars in T2/T1 weighting. Though often visible, smaller pathological lesions of 4-6 mm in size did not regularly meet the expected diagnostic confidence: The visibility of metastases was 18%, consolidation was 64% and scars was 71%. Diffuse interstitial lung changes and hyperinflation, known as "MR-minus pathologies," were not accessible to real-time MRI. CONCLUSION: The method provides motion robust images of the lung and thorax. However, the lower sensitivity for small lung lesions is a major limitation for routine use of this technique. Currently, the method is adequate for diagnosing inflammatory lung diseases, atelectasis, effusions and lung scarring in children with irregular breathing patterns or bulk motion on sedation-free MRI. A medium-term goal is to improve the diagnostic accuracy of small nodules and interstitial lesions.


Asunto(s)
Cicatriz , Enfermedades Pulmonares , Humanos , Niño , Estudios Retrospectivos , Cicatriz/patología , Imagen por Resonancia Magnética/métodos , Pulmón/patología , Espectroscopía de Resonancia Magnética , Artefactos
11.
Pediatr Radiol ; 53(13): 2608-2621, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794175

RESUMEN

BACKGROUND: Congenital heart disease (CHD) is often associated with chronic right ventricular (RV) volume overload. Real-time magnetic resonance imaging (MRI) enables the analysis of cardiac function during free breathing. OBJECTIVE: To evaluate the influence of respiration in pediatric patients with CHD and chronic RV volume overload. METHODS AND MATERIALS: RV volume overload patients (n=6) and controls (n=6) were recruited for cardiac real-time MRI at 1.5 tesla during free breathing. Breathing curves from regions of interest reflecting the position of the diaphragm served for binning images in four different tidal volume classes, each in inspiration and expiration. Tidal volumes were estimated from these curves by data previously obtained by magnetic resonance-compatible spirometry. Ventricular volumes indexed to body surface area and Frank-Starling relationships referenced to the typical tidal volume indexed to body height (TTVi) were compared. RESULTS: Indexed RV end-diastolic volume (RV-EDVi) and indexed RV stroke volume (RV-SVi) increased during inspiration (RV-EDVi/TTVi: RV load: + 16 ± 4%; controls: + 22 ± 13%; RV-SVi/TTVi: RV load: + 21 ± 6%; controls: + 35 ± 17%; non-significant for comparison). The increase in RV ejection fraction during inspiration was significantly lower in RV load patients (RV load: + 1.1 ± 2.2%; controls: + 6.1 ± 1.5%; P=0.01). The Frank-Starling relationship of the RV provided a significantly reduced slope estimate in RV load patients (inspiration: RV load: 0.75 ± 0.11; controls: 0.92 ± 0.02; P=0.02). CONCLUSION: In pediatric patients with CHD and chronic RV volume overload, cardiac real-time MRI during free breathing in combination with respiratory-based binning indicates an impaired Frank-Starling relationship of the RV.


Asunto(s)
Cardiopatías Congénitas , Disfunción Ventricular Derecha , Humanos , Niño , Imagen por Resonancia Magnética/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Volumen Sistólico , Respiración , Disfunción Ventricular Derecha/diagnóstico por imagen , Disfunción Ventricular Derecha/complicaciones
12.
J Extra Corpor Technol ; 55(2): 70-81, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37378439

RESUMEN

BACKGROUND: Blood loss is common during surgical procedures, especially in open cardiac surgery. Allogenic blood transfusion is associated with increased morbidity and mortality. Blood conservation programs in cardiac surgery recommend re-transfusion of shed blood directly or after processing, as this decreases transfusion rates of allogenic blood. But aspiration of blood from the wound area is often associated with increased hemolysis, due to flow induced forces, mainly through development of turbulence. METHODS: We evaluated magnetic resonance imaging (MRI) as a qualitative tool for detection of turbulence. MRI is sensitive to flow; this study uses velocity-compensated T1-weighted 3D MRI for turbulence detection in four geometrically different cardiotomy suction heads under comparable flow conditions (0-1250 mL/min). RESULTS: Our standard control suction head Model A showed pronounced signs of turbulence at all flow rates measured, while turbulence was only detectable in our modified Models 1-3 at higher flow rates (Models 1 and 3) or not at all (Model 2). CONCLUSIONS: The comparison of flow performance of surgical suction heads with different geometries via acceleration-sensitized 3D MRI revealed significant differences in turbulence development between our standard control Model A and the modified alternatives (Models 1-3). As flow conditions during measurement have been comparable, the specific geometry of the respective suction heads must have been the main factor responsible. The underlying mechanisms and causative factors can only be speculated about, but as other investigations have shown, hemolytic activity is positively associated with degree of turbulence. The turbulence data measured in this study correlate with data from other investigations about hemolysis induced by surgical suction heads. The experimental MRI technique used showed added value for further elucidating the underlying physical phenomena causing blood damage due to non-physiological flow.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Hemólisis , Humanos , Succión , Imagen por Resonancia Magnética , Transfusión de Sangre Autóloga/métodos
13.
Magn Reson Med ; 87(4): 1863-1875, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34850452

RESUMEN

PURPOSE: To develop an auto-calibrated image reconstruction for highly accelerated multi-directional phase-contrast (PC) MRI that compensates for (1) reconstruction instabilities occurring for phase differences near ± π and (2) phase errors by concomitant magnetic fields that differ for individual radial spokes. THEORY AND METHODS: A model-based image reconstruction for real-time PC MRI based on nonlinear inversion is extended to multi-directional flow by exploiting multiple flow-encodings for the estimation of velocity vectors. An initial smoothing constraint during iterative optimization is introduced to resolve the ambiguity of the solution space by penalizing phase wraps. Maxwell terms are considered as part of the signal model on a line-by-line basis to address phase errors by concomitant magnetic fields. The reconstruction methods are evaluated using simulated data and cross-sectional imaging of a rotating-disc, as well as in vivo for the aortic arch and cervical spinal canal at 3T. RESULTS: Real-time three-directional velocity mapping in the aortic arch is achieved at 1.8 × 1.8 × 6 mm3 spatial and 60 ms temporal resolution. Artificial phase wraps are avoided in all cases using the smoothness constraint. Inter-spoke differences of concomitant magnetic fields are effectively compensated for by the model-based image reconstruction with integrated radial Maxwell correction. CONCLUSION: Velocity vector reconstructions based on nonlinear inversion allow for high degrees of radial data undersampling paving the way for multi-directional PC MRI in real time. Whether a spoke-wise treatment of Maxwell terms is required or a computationally cheaper frame-wise approach depends on the individual application.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Aorta Torácica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
14.
Pediatr Radiol ; 52(8): 1462-1475, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35353211

RESUMEN

BACKGROUND: Cardiac real-time magnetic resonance imaging (RT-MRI) provides high-quality images even during free-breathing. Difficulties in post-processing impede its use in clinical routine. OBJECTIVE: To demonstrate the feasibility of quantitative analysis of cardiac free-breathing RT-MRI and to compare image quality and volumetry during free-breathing RT-MRI in pediatric patients to standard breath-hold cine MRI. MATERIALS AND METHODS: Pediatric patients (n = 22) received cardiac RT-MRI volumetry during free breathing (1.5 T; short axis; 30 frames per s) in addition to standard breath-hold cine imaging in end-expiration. Real-time images were binned retrospectively based on electrocardiography and respiratory bellows. Image quality and volumetry were compared using the European Cardiovascular Magnetic Resonance registry score, structure visibility rating, linear regression and Bland-Altman analyses. RESULTS: Additional time for binning of real-time images was 2 min. For both techniques, image quality was rated good to excellent. RT-MRI was significantly more robust against artifacts (P < 0.01). Linear regression revealed good correlations for the ventricular volumes. Bland-Altman plots showed a good limit of agreement (LoA) for end-diastolic volume (left ventricle [LV]: LoA -0.1 ± 2.7 ml/m2, right ventricle [RV]: LoA -1.9 ± 3.4 ml/m2), end-systolic volume (LV: LoA 0.4 ± 1.9 ml/m2, RV: LoA 0.6 ± 2.0 ml/m2), stroke volume (LV: LoA -0.5 ± 2.3 ml/m2, RV: LoA -2.6 ± 3.3 ml/m2) and ejection fraction (LV: LoA -0.5 ± 1.6%, RV: LoA -2.1 ± 2.8%). CONCLUSION: Compared to standard cine MRI with breath hold, RT-MRI during free breathing with retrospective respiratory binning offers good image quality, reduced image artifacts enabling fast quantitative evaluations of ventricular volumes in clinical practice under physiological conditions.


Asunto(s)
Contencion de la Respiración , Imagen por Resonancia Cinemagnética , Niño , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Cinemagnética/métodos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Volumen Sistólico
15.
J Acoust Soc Am ; 152(6): 3483, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36586846

RESUMEN

Velum position was analysed as a function of vowel height in German tense and lax vowels preceding a nasal or oral consonant. Findings from previous research suggest an interdependence between vowel height and the degree of velum lowering, with a higher velum during high vowels and a more lowered velum during low vowels. In the current study, data were presented from 33 native speakers of Standard German who were measured via non-invasive high quality real-time magnetic resonance imaging. The focus was on exploring the spatiotemporal extent of velum lowering in tense and lax /a, i, o, ø/, which was done by analysing velum movement trajectories over the course of VN and VC sequences in CVNV and CVCV sequences by means of functional principal component analysis. Analyses focused on the impact of the vowel category and vowel tenseness. Data indicated that not only the position of the velum was affected by these factors but also the timing of velum closure. Moreover, it is argued that the effect of vowel height was to be better interpreted in terms of the physiological constriction location of vowels, i.e., the specific tongue position rather than phonetic vowel height.


Asunto(s)
Fonética , Lengua , Humanos , Lengua/fisiología , Movimiento , Constricción Patológica , Imagen por Resonancia Magnética , Habla/fisiología , Acústica del Lenguaje
16.
Med Probl Perform Art ; 37(2): 89-97, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35637561

RESUMEN

OBJECTIVE: Recent publications describing lingual movement strategies within the oral cavity of brass players have established the existence of efficient and predictable movement patterns in healthy performers for a variety of performance tasks. In this study we extend the research to include the playing of large interval slurs in horn players. METHODS: Real-time MRI films at 40-msec resolution were simultaneously obtained in the sagittal and coronal planes in 9 professional horn players as they performed 2 repetitions each of 3 slur sequences spanning 1 octave, 1 octave + 3rd, and 1 octave + 5th at a mezzo forte dynamic level. Nine profile lines were overlaid on the images allowing the measurement of dorsal tongue edge movement using a customized MATLAB toolkit. Movement along lines representing the anterior, middle, and posterior oral cavity in the sagittal plane, as well as the vertical height of an air channel observed in the coronal plane, are reported. RESULTS: Both sagittal and coronal views demonstrate patterned tongue movements that narrow and widen the air channel during ascending and descending slurs, respectively. The magnitude of these movements is greater during larger intervals, though not perfectly consistent within each slur sequence. Additionally, the tongue position during notes tends to drift in the direction of the subsequent note in each sequence. We suggest that the observed movements may help to modulate air speed through the lips, possible attenuating embouchure muscle tension changes by assisting changes in lip vibration frequency.


Asunto(s)
Música , Humanos , Labio , Imagen por Resonancia Magnética/métodos , Movimiento/fisiología , Lengua/diagnóstico por imagen , Lengua/fisiología
17.
Magn Reson Med ; 86(5): 2692-2702, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34272760

RESUMEN

PURPOSE: To test the feasibility of cardiac real-time MRI in combination with retrospective gating by MR-compatible spirometry, to improve motion control, and to allow quantification of respiratory-induced changes during free-breathing. METHODS: Cross-sectional real-time MRI (1.5T; 30 frames/s) using steady-state free precession contrast during free-breathing was combined with MR-compatible spirometry in healthy adult volunteers (n = 4). Retrospective binning assigned images to classes that were defined by electrocardiogram and spirometry. Left ventricular eccentricity index as an indicator of septal position and ventricular volumes in different respiratory phases were calculated to assess heart-lung interactions. RESULTS: Real-time MRI with MR-compatible spirometry is feasible and well tolerated. Spirometry-based binning improved motion control significantly. The end-diastolic epicardial eccentricity index increased significantly during inspiration (1.04 ± 0.04 to 1.19 ± 0.05; P < .05). During inspiration, right ventricular end-diastolic volume (79 ± 17 mL/m2 to 98 ± 18 mL/m2 ), stroke volume (41 ± 8 mL/m2 to 59 ± 11 mL/m2 ) and ejection fraction (53 ± 3% to 60 ± 1%) increased significantly, whereas the end-systolic volume remained almost unchanged. Left ventricular end-diastolic volume, left ventricular stroke volume, and left ventricular ejection fraction decreased during inspiration, whereas the left ventricular end-systolic volume increased. The relationship between stroke volume and end-diastolic volume (Frank-Starling relationship) based on changes induced by respiration allowed for a slope estimate of the Frank-Starling curve to be 0.9 to 1.1. CONCLUSION: Real-time MRI during free-breathing combined with MR-compatible spirometry and retrospective binning improves image stabilization, allows quantitative image analysis, and importantly, offers unique opportunities to judge heart-lung interactions.


Asunto(s)
Imagen por Resonancia Cinemagnética , Función Ventricular Izquierda , Adulto , Estudios Transversales , Humanos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos , Espirometría , Volumen Sistólico
18.
Neuropediatrics ; 52(4): 233-241, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34192788

RESUMEN

New experimental and clinical findings question the historic view of hydrocephalus and its 100-year-old classification. In particular, real-time magnetic resonance imaging (MRI) evaluation of cerebrospinal fluid (CSF) flow and detailed insights into brain water regulation on the molecular scale indicate the existence of at least three main mechanisms that determine the dynamics of neurofluids: (1) inspiration is a major driving force; (2) adequate filling of brain ventricles by balanced CSF upsurge is sensed by cilia; and (3) the perivascular glial network connects the ependymal surface to the pericapillary Virchow-Robin spaces. Hitherto, these aspects have not been considered a common physiologic framework, improving knowledge and therapy for severe disorders of normal-pressure and posthemorrhagic hydrocephalus, spontaneous intracranial hypotension, and spaceflight disease.


Asunto(s)
Hidrocefalia , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Ventrículos Cerebrales/diagnóstico por imagen , Ventrículos Cerebrales/fisiología , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/etiología , Imagen por Resonancia Magnética/métodos
19.
Pediatr Radiol ; 51(3): 450-456, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33068131

RESUMEN

BACKGROUND: Quantitative mapping of MRI relaxation times is expected to uncover pathological processes in the brain more subtly than standard MRI techniques with weighted contrasts. So far, however, most mapping techniques suffer from a long measuring time, low spatial resolution or even sensitivity to magnetic field inhomogeneity. OBJECTIVE: To obtain T1 relaxation times of the normal brain from early infancy to adulthood using a novel technique for fast and accurate T1 mapping at high spatial resolution. MATERIALS AND METHODS: We performed whole-brain T1 mapping within less than 3 min in 100 patients between 2 months and 18 years of age with normal brain at a field strength of 3 T. We analyzed T1 relaxation times in several gray-matter nuclei and white matter. Subsequently, we derived regression equations for mean value and confidence interval. RESULTS: T1 relaxation times of the pediatric brain rapidly decrease in all regions within the first 3 years of age, followed by a significantly weaker decrease until adulthood. These characteristics are more pronounced in white matter than in deep gray matter. CONCLUSION: Regardless of age, quantitative T1 mapping of the pediatric brain is feasible in clinical practice. Normal age-dependent values should contribute to improved discrimination of subtle intracerebral alterations.


Asunto(s)
Encéfalo , Sustancia Blanca , Adulto , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Niño , Sustancia Gris , Humanos , Lactante , Imagen por Resonancia Magnética
20.
Pediatr Radiol ; 51(5): 840-846, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33566125

RESUMEN

The recent development of highly undersampled radial gradient echo sequences in combination with nonlinear inverse image reconstruction now allows for MRI examinations in real time. Image acquisition times as short as 20 ms yield MRI videos with rates of up to 50 frames per second with spin density, T1- and T2-type contrast. The addition of an initial 180° inversion pulse achieves accurate T1 mapping within only 4 s. These technical advances promise specific advantages for studies of infants and young children by eliminating the need for sedation or anesthesia. Our preliminary data demonstrate new diagnostic opportunities ranging from dynamic studies of speech and swallowing processes and body movements to a rapid volumetric assessment of brain cerebrospinal fluid spaces in only few seconds. Real-time MRI of the heart and blood flow can be performed without electrocardiogram gating and under free breathing. The present findings support the idea that real-time MRI will complement existing methods by providing long-awaited diagnostic options for patients in early childhood. Major advantages are the avoidance of sedation or anesthesia and the yet unexplored potential to gain insights into arbitrary body functions.


Asunto(s)
Imagen por Resonancia Magnética , Radiología , Encéfalo , Niño , Preescolar , Corazón , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA