Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Antibiotics (Basel) ; 11(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36551339

RESUMEN

Modern epidemics quickly spread across borders and continents with devastating effects on both human health and the world economy. This issue is made worse by the various ways that infections are spread, including through aerosol, droplets, and fomites. The antibacterial qualities of various surface materials and coatings have been the subject of much research. However, the antiviral activity of metal coatings can be heavily influenced by imbalances in metal distribution and the presence of other metal impurities. As such, there is interest in developing novel surface coatings that can reduce the transmission of active viral particles in healthcare facilities. In recent years, the non-metals, such as selenium and nanoparticles, have acquired greater interest from the medical and scientific community for their antiviral surface activity. In this review, we will discuss the cellular and physiological functions of selenium in mammalian cells and against viral infections. We then discuss the mechanism behind selenium coated surfaces and their efficacy against bacterial infections. Lastly, we examine the antiviral activity of selenium, and the potential antiviral activity of selenium nanoparticles and coatings.

2.
Front Cell Infect Microbiol ; 12: 1017545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268224

RESUMEN

Staphylococcus aureus (Sa) is an opportunistic pathogen capable of causing various infections ranging from superficial skin infections to life-threatening severe diseases including pneumonia and sepsis. Sa produces biofilms readily on biotic and abiotic surfaces. Biofilm cells are embedded in a protective polysaccharide matrix and show an innate resistance to antibiotics, disinfectants, and clearance by host defenses. Additionally, biofilms serve as a source for systemic dissemination. Moreover, infections associated with biofilms may result in longer hospitalizations, a need for surgery, and may even result in death. Agents that inhibit the formation of biofilms and virulence without affecting bacterial growth to avoid the development of drug resistance could be useful for therapeutic purposes. In this regard, we identified and purified a small cyclic peptide, gurmarin, from a plant source that inhibited the formation of Sa biofilm under in vitro growth conditions without affecting the viability of the bacterium. The purified peptide showed a predicted molecular size of ~4.2 kDa on SDS-PAGE. Transcriptomic analysis of Sa biofilm treated with peptide showed 161 differentially affected genes at a 2-fold change, and some of them include upregulation of genes involved in oxidoreductases and downregulation of genes involved in transferases and hydrolases. To determine the inhibitory effect of the peptide against Sa biofilm formation and virulence in vivo, we used a rat-implant biofilm model. Sa infected implants with or without peptide were placed under the neck skin of rats for seven days. Implants treated with peptide showed a reduction of CFU and lack of edema and sepsis when compared to that of control animals without peptide. Taken together, gurmarin peptide blocks Sa biofilm formation in vitro and in vivo and can be further developed for therapeutic use.


Asunto(s)
Desinfectantes , Sepsis , Infecciones Estafilocócicas , Ratas , Animales , Staphylococcus aureus , Péptidos Cíclicos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas , Antibacterianos/farmacología , Desinfectantes/farmacología , Transferasas/farmacología , Hidrolasas , Oxidorreductasas
3.
Anaerobe ; 17(3): 125-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21664468

RESUMEN

Clostridium difficile is a nosocomial pathogen identified as the cause of antibiotic-associated diarrhea and colitis. In this study, we have documented the lysogeny of a C. difficile bacteriophage in hamsters during C. difficile infection. The lysogens isolated from the hamsters were toxin typed and their phage integration site was confirmed by PCR. Through toxin ELISA it was found that the toxin production in the in vivo isolated lysogens was affected due to ФCD119 lysogenization as in the case of in vitro isolated ФCD119 lysogens. Together our findings indicate that a baceriophage can lysogenize its C. difficile host even during the infection process and highlights the importance of lysogeny of C. difficile phages as an evolutionary adaptation for survival.


Asunto(s)
Bacteriófagos/patogenicidad , Clostridioides difficile/virología , Infecciones por Clostridium/virología , Genoma Bacteriano , Lisogenia , Animales , Proteínas Bacterianas/análisis , Toxinas Bacterianas/análisis , Técnicas de Tipificación Bacteriana/métodos , Bacteriófagos/genética , Southern Blotting , Clostridioides difficile/clasificación , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Cricetinae , Diarrea/microbiología , Diarrea/virología , Enterotoxinas/análisis , Islas Genómicas , Polimorfismo de Longitud del Fragmento de Restricción
4.
Antibiotics (Basel) ; 10(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063816

RESUMEN

This study examines the use of a covalently selenium-bonded peptide and phage that binds to the Yersinia pestis F1 antigen for the targeting and killing of E. coli expressing this surface antigen. Using a Ph.D.-12 phage-display library for affinity selection of the phage which would bind the F1 antigen of Y. pestis, a phage displaying a peptide that binds the F1 antigen with high affinity and specificity was identified. Selenium was then covalently attached to the display phage and the corresponding F1-antigen-binding peptide. Both the phage and peptides with selenium covalently attached retained their binding specificity for the Y. pestis F1 antigen. The phage or peptide not labeled with selenium did not kill the targeted bacteria, while the phage or peptide labeled with selenium did. In addition, the seleno-peptide, expressing the F1 targeting sequence only, killed cells expressing the F1 antigen but not the parent strain that did not express the F1 antigen. Specifically, the seleno-peptide could kill eight logs of bacteria in less than two hours at a 10-µM concentration. These results demonstrate a novel approach for the development of an antibacterial agent that can target a specific bacterial pathogen for destruction through the use of covalently attached selenium and will not affect other bacteria.

5.
J Virol ; 83(23): 12037-45, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19776116

RESUMEN

Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Bacteriófagos/genética , Clostridioides difficile/fisiología , Clostridioides difficile/virología , Regulación Bacteriana de la Expresión Génica , Profagos/genética , Fusión Artificial Génica , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Huella de ADN , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Genes Reporteros , Glucuronidasa/genética , Glucuronidasa/metabolismo , Humanos , Lisogenia , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Proteínas Represoras/metabolismo , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación , Proteínas Virales/metabolismo
6.
Viruses ; 11(3)2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30862096

RESUMEN

The 'Appelmans protocol' is used by Eastern European researchers to generate therapeutic phages with novel lytic host ranges. Phage cocktails are iteratively grown on a suite of mostly refractory bacterial isolates until the evolved cocktail can lyse the phage-resistant strains. To study this process, we developed a modified protocol using a cocktail of three Pseudomonas phages and a suite of eight phage-resistant (including a common laboratory strain) and two phage-sensitive Pseudomona aeruginosa strains. After 30 rounds of selection, phages were isolated from the evolved cocktail with greatly increased host range. Control experiments with individual phages showed little host-range expansion, and genomic analysis of one of the broad-host-range output phages showed its recombinatorial origin, suggesting that the protocol works predominantly via recombination between phages. The Appelmans protocol may be useful for evolving therapeutic phage cocktails as required from well-defined precursor phages.


Asunto(s)
Bacteriófagos/genética , Evolución Molecular Dirigida/métodos , Terapia de Fagos , Recombinación Genética , Farmacorresistencia Viral , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Myoviridae/genética , Infecciones por Pseudomonas/microbiología , Fagos Pseudomonas/efectos de los fármacos , Fagos Pseudomonas/genética
7.
Foodborne Pathog Dis ; 5(2): 205-21, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18407759

RESUMEN

Antibiotics are important tools used to control infections. Unfortunately, microbes can become resistant to antibiotics, which limit the drugs' usefulness for clinical and veterinary use. It is necessary to improve our understanding of mechanisms that contribute to or enhance antibiotic resistance. Using nalidixic acid (NA) exposure as a sole selective agent, a resistant strain of Salmonella enterica Typhimurium 14028 was derived (2a) that had acquired resistance to chloramphenicol, sulfisoxazole, cefoxitin, tetracycline, and NA. We employed gene array analysis to further characterize this derivative. Results indicate a significant difference (FDR < 5%) in the expression of 338 genes (fold regulation > 1.3) between the derivative and the parent strain growing exponentially under the same conditions at 37 degrees C. Strain 2a showed comparative induction of Salmonella pathogenicity island 2 (SPI2) transcripts and repression of SPI1 genes. Differences in expression were related to efflux pumps (increased expression), porins (decreased expression), type III secretion systems (increased expression), lipopolysaccharide synthesis (decreased expression), motility-related genes (decreased expression), and PhoP/PhoQ and peptidoglycan synthesis (increased expression). It appears that 2a developed altered regulation of gene expression to decrease the influx and increase the efflux of deleterious environmental agents (antibiotics) into and out of the cell, respectively. Mechanism(s) by which this was accomplished or the reason for alterations in gene expression of other genetic systems (curli, flagella, PhoP/PhoQ, and peptidoglycan) are not immediately apparent. Evaluation of transcriptomes within multiple antibiotic-resistant mutants hopefully will enable us to better understand those generalized mechanisms by which bacteria become resistant to multiple antibiotics. Future work in sequencing these genomes and evaluating pathogenicity are suggested.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ácido Nalidíxico/farmacología , Salmonella typhimurium/efectos de los fármacos , Adaptación Fisiológica , Farmacorresistencia Bacteriana Múltiple/genética , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Salmonella typhimurium/genética
8.
Microbiol Res ; 169(5-6): 425-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24140154

RESUMEN

In order to understand the specificity of interactions between the components of multidrug-resistant (MDR) efflux pumps and how they are recruited/assembled, we analyzed the effect of C-terminal truncation, deletion, and peptide swapping on the stability and functionality of OprM in Escherichia coli. The efflux activity of OprM was not affected by removing up to 19 amino acid residues from the C-terminus, while depletion of more than 20 residues or disruption the 463LGGG466 motif diminished both the stability and activity of OprM. The replacement of the OprM C-terminus 23 residues with the corresponding part of TolC or VceC did not affect the stability and the functionality of OprM. Therefore, it is confirmed that the C-terminal 463LGGG466 motif is one of the crucial components for the stability of OprM and for the functionality of the OprM-VceAB chimeric pump in E.coli. The results also indicate that one residue substitution on the hairpin domain of the membrane fusion protein (MFP) VceA could suppress the null like mutations on the C-terminal modified OprM. This finding will be the direct genetic evidence that the C-terminal domain of outer efflux protein (OEP) is involved in the functional assembly of OEP-MFP.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Multimerización de Proteína , Estabilidad Proteica , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Análisis Mutacional de ADN , Escherichia coli/química , Escherichia coli/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética
9.
FEBS Lett ; 584(8): 1493-7, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20206171

RESUMEN

Although the architecture of tripartite multiple drug resistance (MDR) efflux pumps of Gram-negative bacteria has been well characterized, the means by which the components recognize each other and assemble into a functional pump remains obscure. In this study we present evidence that the C-terminal domain of the Pseudomonas aeruginosa OprM and the alpha-helical hairpin domain of Vibrio cholerae VceA play an important role in the recognition/specificity/recruitment step in the assembly of a functional, VceAB-OprM chimeric efflux pump. To our knowledge, this is the first evidence directly linking the C-terminal domain of an outer membrane efflux protein to its recruitment during the assembly of a tripartite efflux pump.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Genes MDR , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Estructura Terciaria de Proteína , Pseudomonas aeruginosa , Vibrio cholerae
10.
Antimicrob Agents Chemother ; 51(6): 1934-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17387151

RESUMEN

Mice compromised by a burn wound injury and subjected to a fatal infection with Pseudomonas aeruginosa were administered a single dose of a Pseudomonas aeruginosa phage cocktail consisting of three different P. aeruginosa phages by three different routes: the intramuscular (i.m.), subcutaneous (s.c.), or intraperitoneal (i.p.) route. The results of these studies indicated that a single dose of the P. aeruginosa phage cocktail could significantly decrease the mortality of thermally injured, P. aeruginosa-infected mice (from 6% survival without treatment to 22 to 87% survival with treatment) and that the route of administration was particularly important to the efficacy of the treatment, with the i.p. route providing the most significant (87%) protection. The pharmacokinetics of phage delivery to the blood, spleen, and liver suggested that the phages administered by the i.p. route were delivered at a higher dose, were delivered earlier, and were delivered for a more sustained period of time than the phages administered by the i.m. or s.c. route, which may explain the differences in the efficacies of these three different routes of administration.


Asunto(s)
Quemaduras/complicaciones , Modelos Animales de Enfermedad , Infecciones por Pseudomonas/terapia , Fagos Pseudomonas/fisiología , Pseudomonas aeruginosa/virología , Infección de Heridas/terapia , Animales , Femenino , Inyecciones Intramusculares , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Ratones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/mortalidad , Resultado del Tratamiento , Infección de Heridas/microbiología , Infección de Heridas/mortalidad
11.
J Bacteriol ; 188(11): 3757-62, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16707668

RESUMEN

VceC is the outer membrane component of the major facilitator (MF) VceAB-VceC multiple-drug-resistant (MDR) efflux pump of Vibrio cholerae. TolC is the outer membrane component of the resistance-nodulation-division AcrAB-TolC efflux pump of Escherichia coli. Although these proteins share little amino acid sequence identity, their crystal structures can be readily superimposed upon one another. In this study, we have asked if TolC and VceC are interchangeable for the functioning of the AcrAB and VceAB pumps. We have found that TolC can replace VceC to form a functional VceAB-TolC MDR pump, but VceC cannot replace TolC to form a functional AcrAB-VceC pump. However, we have been able to isolate gain-of-function (gof) VceC mutants which can functionally interface with AcrAB. These mutations map to four different amino acids located at the periplasmic tip of VceC. Chemical cross-linkage experiments indicate that both wild-type and gof mutant VceC can physically interact with the AcrAB complex, suggesting that these gof mutations are not affecting the recruitment of VceC to the AcrAB complex but rather its ability to functionally interface with the AcrAB pump.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Lipoproteínas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Antibacterianos/farmacología , Resistencia a Múltiples Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Genotipo , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Plásmidos , Conformación Proteica
12.
J Bacteriol ; 188(10): 3716-20, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16672625

RESUMEN

Clostridium difficile produces two toxins, A and B, which act together to cause pseudomembraneous colitis. The genes encoding these toxins, tcdA and tcdB, are part of the pathogenicity locus, which also includes tcdC, a putative negative regulator of the toxin genes. In this study, we demonstrate that TcdC is a membrane-associated protein in C. difficile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Adenosina Trifosfatasas/metabolismo , Anticuerpos , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/genética , Secuencia de Bases , Clostridioides difficile/genética , Cartilla de ADN , Cinética , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación
13.
J Bacteriol ; 188(7): 2568-77, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16547044

RESUMEN

In this study, we have isolated a temperate phage (PhiCD119) from a pathogenic Clostridium difficile strain and sequenced and annotated its genome. This virus has an icosahedral capsid and a contractile tail covered by a sheath and contains a double-stranded DNA genome. It belongs to the Myoviridae family of the tailed phages and the order Caudovirales. The genome was circularly permuted, with no physical ends detected by sequencing or restriction enzyme digestion analysis, and lacked a cos site. The DNA sequence of this phage consists of 53,325 bp, which carries 79 putative open reading frames (ORFs). A function could be assigned to 23 putative gene products, based upon bioinformatic analyses. The PhiCD119 genome is organized in a modular format, which includes modules for lysogeny, DNA replication, DNA packaging, structural proteins, and host cell lysis. The PhiCD119 attachment site attP lies in a noncoding region close to the putative integrase (int) gene. We have identified the phage integration site on the C. difficile chromosome (attB) located in a noncoding region just upstream of gene gltP, which encodes a carrier protein for glutamate and aspartate. This genetic analysis represents the first complete DNA sequence and annotation of a C. difficile phage.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/genética , Clostridioides difficile/virología , Genoma Viral , Replicación del ADN/genética , ADN Viral , Genes Virales/genética , Lisogenia , Sistemas de Lectura Abierta/genética , Recombinación Genética/genética , Ensamble de Virus/genética
16.
Mol Microbiol ; 49(4): 895-903, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12890016

RESUMEN

Chromosome separation and segregation must be executed within a bacterial cell in which the membrane and cytoplasm are highly structured. Here, we develop a strand-specific model based on each of the future daughter chromosomes being associated with a different set of structures or hyperstructures in an asymmetric cell. The essence of the segregation mechanism is that the genes on the same strand in the parental cell that are expressed together in a hyperstructure continue to be expressed together and segregate together in the daughter cell. The model therefore requires an asymmetric distribution of classes of genes and of binding sites and other structures on the strands of the parental chromosome. We show that the model is consistent with the asymmetric distribution of highly expressed genes and of stress response genes in Escherichia coli and Bacillus subtilis. The model offers a framework for interpreting data from genomics.


Asunto(s)
Bacterias/genética , Segregación Cromosómica/fisiología , Cromosomas Bacterianos/metabolismo , Bacillus subtilis/genética , Mapeo Cromosómico , ADN/metabolismo , Escherichia coli/genética , Genes Bacterianos , Modelos Biológicos
17.
J Bacteriol ; 185(19): 5772-8, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-13129948

RESUMEN

TolC is the outer-membrane component of several multidrug resistance (MDR) efflux pumps and plays an important role in the survival and virulence of many gram-negative bacterial animal pathogens. We have identified and characterized the outer-membrane protein-encoding gene tolC in the bacterial plant pathogen Erwinia chrysanthemi EC16. The gene was found to encode a 51-kDa protein with 70% identity to its Escherichia coli homologue. The E. chrysanthemi gene was able to functionally complement the E. coli tolC gene with respect to its role in MDR efflux pumps. A tolC mutant of E. chrysanthemi was found to be extremely sensitive to antimicrobial agents, including several plant-derived chemicals. This mutant was unable to grow in planta and its ability to cause plant tissue maceration was severely compromised. The tolC mutant was shown to be defective in the efflux of berberine, a model antimicrobial plant chemical. These results suggest that by conferring resistance to the antimicrobial compounds produced by plants, the E. chrysanthemi tolC plays an important role in the survival and colonization of the pathogen in plant tissue.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Berberina/farmacología , Dickeya chrysanthemi/patogenicidad , Farmacorresistencia Bacteriana , Plantas/química , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Cichorium intybus/microbiología , Dickeya chrysanthemi/efectos de los fármacos , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Virulencia
18.
Acta Biotheor ; 50(4): 357-73, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12675536

RESUMEN

New concepts may prove necessary to profit from the avalanche of sequence data on the genome, transcriptome, proteome and interactome and to relate this information to cell physiology. Here, we focus on the concept of large activity-based structures, or hyperstructures, in which a variety of types of molecules are brought together to perform a function. We review the evidence for the existence of hyperstructures responsible for the initiation of DNA replication, the sequestration of newly replicated origins of replication, cell division and for metabolism. The processes responsible for hyperstructure formation include changes in enzyme affinities due to metabolite-induction, lipid-protein affinities, elevated local concentrations of proteins and their binding sites on DNA and RNA, and transertion. Experimental techniques exist that can be used to study hyperstructures and we review some of the ones less familiar to biologists. Finally, we speculate on how a variety of in silico approaches involving cellular automata and multi-agent systems could be combined to develop new concepts in the form of an Integrated cell (I-cell) which would undergo selection for growth and survival in a world of artificial microbiology.


Asunto(s)
Bacterias/citología , Bacterias/genética , Genes Bacterianos/fisiología , Algoritmos , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ciclo Celular/fisiología , Simulación por Computador , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Sustancias Macromoleculares , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA