Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 56(19): 11565-11576, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28921970

RESUMEN

A series of tris-heteroleptic iridium complexes of the form [Ir(C^N1)(C^N2)(acac)] combining 2-phenylpyridine (ppy), 2-(2,4-difluorophenyl)pyridine (dFppy), 1-phenylpyrazole (ppz), and 1-(2,4-difluorophenyl)pyrazole (dFppz) as the C^N ligands have been synthesized and fully characterized by NMR, X-ray crystallography, UV-vis absorption and emission spectroscopy, and electrochemical methods. It is shown that "static properties" (e.g., absorption and emission spectra and redox potentials) are primarily dictated by the overall architecture of the complex, while "dynamic properties" (e.g., excited-state lifetime and radiative and nonradiative rate constants) are, in addition, sensitive to the specific positioning of the substituents. As a result, the two complexes [Ir(dFppy)(ppz)(acac)] and [Ir(ppy)(dFppz)(acac)] have the same emission maxima and redox potentials, but their radiative and nonradiative rate constants differ significantly by a factor ∼2. Then acetylacetonate (acac) was replaced by picolinate (pic), and two pairs of diastereoisomers were obtained. As expected, the use of pic as the ancillary ligand results in blue-shifted emission, stabilization of the oxidation potential, and improvement of the photoluminescence quantum yield, and only minor differences in the optoelectronic properties are found between the two diastereoisomers of each pair.

2.
J Chem Phys ; 140(14): 144103, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735284

RESUMEN

Using an approach based upon a set of auxiliary many-electron wavefunctions we present a rigorous derivation of spin-orbit coupling (SOC) within the framework of linear-response time-dependent density functional theory (LR-TDDFT). Our method is based on a perturbative correction of the non-relativistic collinear TDDFT equations using a Breit-Pauli spin-orbit Hamiltonian. The derivation, which is performed within both the Casida and Sternheimer formulations of LR-TDDFT, is valid for any basis set. The requirement of spin noncollinearity for the treatment of spin-flip transitions is also discussed and a possible alternative solution for the description of these transitions in the collinear case is also proposed. Our results are validated by computing the SOC matrix elements between singlet and triplet states of two molecules, formaldehyde and acetone. In both cases, we find excellent agreement with benchmark calculations performed with a high level correlated wavefunction method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA