Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(5): 2648-2671, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38180812

RESUMEN

Telomerase-negative tumors maintain telomere length by alternative lengthening of telomeres (ALT), but the underlying mechanism behind ALT remains poorly understood. A proportion of aggressive neuroblastoma (NB), particularly relapsed tumors, are positive for ALT (ALT+), suggesting that a better dissection of the ALT mechanism could lead to novel therapeutic opportunities. TERRA, a long non-coding RNA (lncRNA) derived from telomere ends, localizes to telomeres in a R-loop-dependent manner and plays a crucial role in telomere maintenance. Here we present evidence that RNA modification at the N6 position of internal adenosine (m6A) in TERRA by the methyltransferase METTL3 is essential for telomere maintenance in ALT+ cells, and the loss of TERRA m6A/METTL3 results in telomere damage. We observed that m6A modification is abundant in R-loop enriched TERRA, and the m6A-mediated recruitment of hnRNPA2B1 to TERRA is critical for R-loop formation. Our findings suggest that m6A drives telomere targeting of TERRA via R-loops, and this m6A-mediated R-loop formation could be a widespread mechanism employed by other chromatin-interacting lncRNAs. Furthermore, treatment of ALT+ NB cells with a METTL3 inhibitor resulted in compromised telomere targeting of TERRA and accumulation of DNA damage at telomeres, indicating that METTL3 inhibition may represent a therapeutic approach for ALT+ NB.


Asunto(s)
Metiltransferasas , Neuroblastoma , ARN Largo no Codificante , Humanos , Adenina/análogos & derivados , Metiltransferasas/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , Telómero/genética , Homeostasis del Telómero
2.
EMBO J ; 40(3): e105784, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33411331

RESUMEN

High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.


Asunto(s)
Citocinas/genética , Citocinas/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Regulación hacia Arriba , Quinasa de Linfoma Anaplásico/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Mutación con Ganancia de Función , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Análisis de Secuencia de ARN , Ensayos Antitumor por Modelo de Xenoinjerto
3.
BMC Genomics ; 23(1): 149, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35184734

RESUMEN

BACKGROUND: Transgenic animal models are crucial for the study of gene function and disease, and are widely utilized in basic biological research, agriculture and pharma industries. Since the current methods for generating transgenic animals result in the random integration of the transgene under study, the phenotype may be compromised due to disruption of known genes or regulatory regions. Unfortunately, most of the tools that predict transgene insertion sites from high-throughput data are not publicly available or not properly maintained. RESULTS: We implemented TC-hunter, Transgene-Construct hunter, an open tool that identifies transgene insertion sites and provides simple reports and visualization aids. It relies on common tools used in the analysis of high-throughput data and makes use of chimeric reads and discordant read pairs to identify and support the transgenic insertion site. To demonstrate its applicability, we applied TC-hunter to four transgenic mice samples harboring the human PPM1D gene, a model used in the study of malignant tumor development. We identified the transgenic insertion site in each sample and experimentally validated them with Touchdown-polymerase chain reaction followed by Sanger sequencing. CONCLUSIONS: TC-hunter is an accessible bioinformatics tool that can automatically identify transgene insertion sites from DNA sequencing data with high sensitivity (98%) and precision (92.45%). TC-hunter is a valuable tool that can aid in evaluating any potential phenotypic complications due to the random integration of the transgene and can be accessed at https://github.com/bcfgothenburg/SSF .


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ratones , Ratones Transgénicos , Transgenes
4.
Genes Chromosomes Cancer ; 59(1): 50-57, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31340081

RESUMEN

Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.

5.
Proc Natl Acad Sci U S A ; 114(32): E6603-E6612, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739902

RESUMEN

Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3ß-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN-driven neuroblastoma growth in TH-MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.


Asunto(s)
Neuroblastoma , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/enzimología , Neuroblastoma/patología , Inhibidores de Proteínas Quinasas , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas Asociadas a rho/metabolismo
6.
Scand J Gastroenterol ; 54(12): 1441-1447, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31814461

RESUMEN

Background: Intestinal degenerative neuropathy without extra-intestinal involvement occurs as familial forms (FIDN) but the genetics behind is unknown. We studied a Swedish family with autosomal dominant disease and several cases of chronic intestinal pseudo-obstruction (CIP).Methods: We included 33 members of a family sharing a male ancestor. Chronic intestinal symptoms including diarrhoea occurred in 11, four had severe CIP. DNA was analysed with SNP-microarray (Affymetrix), linkage (Allegro Software) and gene dosage (CNAG 3.0).Results: Genetic linkage was found to the short arm of Ch9 to a 9.7 Mb region with 45 protein-coding genes, 22 of which were duplicated (1.2 Mb duplication) (dup(9)(p21.3) with breaking point in the FOCAD-gene. Lod score for the region was 3.4. Fourteen subjects were duplication carriers including all 11 subjects having severe chronic symptoms/CIP. Nineteen subjects had no duplication. The occurrence of gastrointestinal symptoms in the family was strongly linked to duplication carrier-ship (p = .0005). The two branches of the family had separate maternal ancestors (A and B). Including the previous generation, severe disease (overt CIP and/or death from intestinal failure) was assessed to occur in 100% (5/5) of duplication carriers in branch A and in 21% (3/14) in branch B (p = .005). In branch B the onset of symptoms was later (median 38 vs. 24 yrs) and three duplication carriers were symptom-free.Conclusions: In this family with autosomal dominant hereditary intestinal neuropathy, the disorder is linked to a 9.7 Mb region in Ch9 including a 1.2 Mb duplication. There is a significant difference in disease expressivity between family branches, seemingly related to separate maternal ancestors.


Asunto(s)
Cromosomas Humanos Par 9 , Diarrea , Trastornos Heredodegenerativos del Sistema Nervioso , Seudoobstrucción Intestinal , Intestinos , Proteínas del Tejido Nervioso/genética , Adulto , Enfermedad Crónica , Diarrea/diagnóstico , Diarrea/etiología , Familia , Femenino , Duplicación de Gen , Sitios Genéticos , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico , Trastornos Heredodegenerativos del Sistema Nervioso/epidemiología , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Humanos , Seudoobstrucción Intestinal/epidemiología , Seudoobstrucción Intestinal/etiología , Seudoobstrucción Intestinal/fisiopatología , Intestinos/inervación , Intestinos/fisiopatología , Masculino , Linaje , Índice de Severidad de la Enfermedad , Suecia/epidemiología
7.
Pharmacol Res ; 131: 164-176, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29466695

RESUMEN

Neuroblastoma is the most common extracranical tumor of childhood and the most deadly tumor of infancy. It is characterized by early age onset and high frequencies of metastatic disease but also the capacity to spontaneously regress. Despite intensive therapy, the survival for patients with high-risk neuroblastoma and those with recurrent or relapsed disease is low. Hence, there is an urgent need to develop new therapies for these patient groups. The molecular pathogenesis based on high-throughput omics technologies of neuroblastoma is beginning to be resolved which have given the opportunity to develop personalized therapies for high-risk patients. Here we discuss the potential of developing targeted therapies against aberrantly expressed molecules detected in sub-populations of neuroblastoma patients and how these selected targets can be drugged in order to overcome treatment resistance, improve survival and quality of life for these patients and also the possibilities to transfer preclinical research into clinical testing.


Asunto(s)
Antineoplásicos/uso terapéutico , Terapia Molecular Dirigida/métodos , Neuroblastoma/tratamiento farmacológico , Neoplasias del Sistema Nervioso Periférico/tratamiento farmacológico , Antineoplásicos/farmacología , Niño , Descubrimiento de Drogas/métodos , Resistencia a Antineoplásicos , Drogas en Investigación/farmacología , Drogas en Investigación/uso terapéutico , Humanos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neoplasias del Sistema Nervioso Periférico/metabolismo , Neoplasias del Sistema Nervioso Periférico/patología , Calidad de Vida , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/patología
8.
Genes Chromosomes Cancer ; 54(2): 99-109, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25251827

RESUMEN

Anaplastic lymphoma kinase (ALK) has been demonstrated to be deregulated in sporadic as well as in familiar cases of neuroblastoma (NB). Whereas ALK-fusion proteins are common in lymphoma and lung cancer, there are few reports of ALK rearrangements in NB indicating that ALK mainly exerts its oncogenic capacity via activating mutations and/or overexpression in this tumor type. In this study, 332 NB tumors and 13 cell lines were screened by high resolution single nucleotide polymorphism microarray. Gain of 2p was detected in 23% (60/332) of primary tumors and 46% (6/13) of cell lines, while breakpoints at the ALK locus were detected in four primary tumors and two cell lines. These were further analyzed by next generation sequencing and a targeted enrichment approach. Samples with both ALK and MYCN amplification displayed complex genomic rearrangements with multiple breakpoints within the amplicon. None of the translocations characterized in primary NB tumors are likely to result in a chimeric protein. However, immunohistochemical analysis reveals high levels of phosphorylated ALK in these samples despite lack of initial exons, possibly due to alternative transcription initiation sites. Both ALK proteins predicted to arise from such alterations and from the abnormal ALK exon 4-11 deletion observed in the CLB-BAR cell line show strong activation of downstream targets STAT3 and extracellular signal-regulated kinase (ERK) when expressed in PC12 cells. Taken together, our data indicate a novel, although rare, mechanism of ALK activation with implications for NB tumorigenesis.


Asunto(s)
Reordenamiento Génico , Neuroblastoma/genética , Proteínas Tirosina Quinasas Receptoras/genética , Translocación Genética , Quinasa de Linfoma Anaplásico , Animales , Línea Celular Tumoral , Puntos de Rotura del Cromosoma , Exones , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/metabolismo , Células PC12 , Polimorfismo de Nucleótido Simple , Ratas , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
9.
Lancet Reg Health Eur ; 39: 100881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38803632

RESUMEN

Background: Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors. Methods: gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients. Findings: The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35). Interpretation: Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients. Funding: The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.

10.
BMC Med Genet ; 14: 102, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-24088605

RESUMEN

BACKGROUND: Chromosomal instability is a hallmark of human cancer caused by errors in mitotic control and chromosome segregation. STAG2 encodes a subunit of the cohesion complex that participates in mitotic chromatid separation and was recently found to show low expression and inactivating mutations in Ewing's sarcoma, melanoma and glioblastoma.In the childhood tumor neuroblastoma (NB) segmental chromosomal alterations are associated with poor prognosis whereas tumors displaying whole chromosome gains and losses have a much better prognosis. METHOD: As the genetic contribution to aneuploidy is unknown in NB, we investigated the presence of STAG2 mutations through sequence analysis of all 33 coding exons in 37 primary NB tumors. RESULTS AND CONCLUSION: As no STAG2 mutation was detected in this study, we conclude that inactivating mutation of STAG2 is not likely causative to neuroblastoma aneuploidy.


Asunto(s)
Aneuploidia , Antígenos Nucleares/genética , Neoplasias del Sistema Nervioso/genética , Neuroblastoma/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Exones , Humanos , Neoplasias del Sistema Nervioso/patología , Neuroblastoma/patología , Mutación Puntual , Análisis de Secuencia de ADN
11.
Int J Oncol ; 62(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36601748

RESUMEN

Neuroblastoma (NB) is a childhood malignancy of the sympathetic nervous system. NB is mainly driven by copy number alterations, such as MYCN amplification, large deletions of chromosome arm 11q and gain of chromosome arm 17q, which are all markers of high­risk disease. Genes targeted by recurrent, smaller, focal alterations include CDKN2A/B, TERT, PTPRD and ATRX. Our previous study on relapsed NB detected recurrent structural alterations centered at limbic system­associated membrane protein (LSAMP; HUGO Gene Nomenclature Committee: 6705; chromosomal location 3q13.31), which is a gene frequently reported to be deleted or downregulated in other types of cancer. Notably, in cancer, LSAMP has been shown to have tumor­suppressing functions. The present study performed an expanded investigation using whole genome sequencing of tumors from 35 patients, mainly with high­risk NB. Focal duplications or deletions targeting LSAMP were detected in six cases (17%), whereas single nucleotide polymorphism­microarray analysis of 16 NB cell lines detected segmental alterations at 3q13.31 in seven out of the 16 NB cell lines (44%). Furthermore, low expression of LSAMP in NB tumors was significantly associated with poor overall and event­free survival. In vitro, knockdown of LSAMP in NB cell lines increased cell proliferation, whereas overexpression decreased proliferation and viability. These findings supported a tumor suppressor role for LSAMP in NB. However, the higher incidence of LSAMP aberrations in cell lines and in relapsed NB tumors suggested that these alterations were a late event predominantly in advanced NB with a poor prognosis, indicating a role of LSAMP in tumor progression rather than in tumor initiation. In conclusion, the present study demonstrated recurrent genomic aberrations of chromosomal region 3q13.31 that targeted the LSAMP gene, which encodes a membrane protein involved in cell adhesion, central nervous system development and neurite outgrowth. The frequent aberrations affecting LSAMP, together with functional evidence, suggested an anti­proliferative role of LSAMP in NB.


Asunto(s)
Genes Supresores de Tumor , Neuroblastoma , Niño , Humanos , Línea Celular Tumoral , Aberraciones Cromosómicas , Neuroblastoma/genética
12.
Cancers (Basel) ; 15(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38136279

RESUMEN

Tumor cells are hallmarked by their capacity to undergo unlimited cell divisions, commonly accomplished either by mechanisms that activate TERT or through the alternative lengthening of telomeres pathway. Neuroblastoma is a heterogeneous pediatric cancer, and the aim of this study was to characterize telomere maintenance mechanisms in a high-risk neuroblastoma cohort. All tumor samples were profiled with SNP microarrays and, when material was available, subjected to whole genome sequencing (WGS). Telomere length was estimated from WGS data, samples were assayed for the ALT biomarker c-circles, and selected samples were subjected to methylation array analysis. Samples with ATRX aberration in this study were positive for c-circles, whereas samples with either MYCN amplification or TERT re-arrangement were negative for c-circles. Both ATRX aberrations and TERT re-arrangement were enriched in 11q-deleted samples. An association between older age at diagnosis and 1q-deletion was found in the ALT-positive group. TERT was frequently placed in juxtaposition to a previously established gene in neuroblastoma tumorigenesis or cancer in general. Given the importance of high-risk neuroblastoma, means for mitigating active telomere maintenance must be therapeutically explored.

13.
JCO Precis Oncol ; 7: e2300039, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384868

RESUMEN

PURPOSE: Several studies have indicated that broad genomic characterization of childhood cancer provides diagnostically and/or therapeutically relevant information in selected high-risk cases. However, the extent to which such characterization offers clinically actionable data in a prospective broadly inclusive setting remains largely unexplored. METHODS: We implemented prospective whole-genome sequencing (WGS) of tumor and germline, complemented by whole-transcriptome sequencing (RNA-Seq) for all children diagnosed with a primary or relapsed solid malignancy in Sweden. Multidisciplinary molecular tumor boards were set up to integrate genomic data in the clinical decision process along with a medicolegal framework enabling secondary use of sequencing data for research purposes. RESULTS: During the study's first 14 months, 118 solid tumors from 117 patients were subjected to WGS, with complementary RNA-Seq for fusion gene detection in 52 tumors. There was no significant geographic bias in patient enrollment, and the included tumor types reflected the annual national incidence of pediatric solid tumor types. Of the 112 tumors with somatic mutations, 106 (95%) exhibited alterations with a clear clinical correlation. In 46 of 118 tumors (39%), sequencing only corroborated histopathological diagnoses, while in 59 cases (50%), it contributed to additional subclassification or detection of prognostic markers. Potential treatment targets were found in 31 patients (26%), most commonly ALK mutations/fusions (n = 4), RAS/RAF/MEK/ERK pathway mutations (n = 14), FGFR1 mutations/fusions (n = 5), IDH1 mutations (n = 2), and NTRK2 gene fusions (n = 2). In one patient, the tumor diagnosis was revised based on sequencing. Clinically relevant germline variants were detected in 8 of 94 patients (8.5%). CONCLUSION: Up-front, large-scale genomic characterization of pediatric solid malignancies provides diagnostically valuable data in the majority of patients also in a largely unselected cohort.


Asunto(s)
Carcinoma , Medicina de Precisión , Humanos , Niño , Recurrencia Local de Neoplasia , Fusión Génica , Genómica
14.
PLoS One ; 17(11): e0277524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36417404

RESUMEN

Vesicoureteral reflux (VUR) is a common urological problem in children and its hereditary nature is well recognised. However, despite decades of research, the aetiological factors are poorly understood and the genetic background has been elucidated in only a minority of cases. To explore the molecular aetiology of primary hereditary VUR, we performed whole-exome sequencing in 13 large families with at least three affected cases. A large proportion of our study cohort had congenital renal hypodysplasia in addition to VUR. This high-throughput screening revealed 23 deleterious heterozygous variants in 19 candidate genes associated with VUR or nephrogenesis. Sanger sequencing and segregation analysis in the entire families confirmed the following findings in three genes in three families: frameshift LAMC1 variant and missense variants of KIF26B and LIFR genes. Rare variants were also found in SALL1, ROBO2 and UPK3A. These gene variants were present in individual cases but did not segregate with disease in families. In all, we demonstrate a likely causal gene variant in 23% of the families. Whole-exome sequencing technology in combination with a segregation study of the whole family is a useful tool when it comes to understanding pathogenesis and improving molecular diagnostics of this highly heterogeneous malformation.


Asunto(s)
Cinesinas , Laminina , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia , Reflujo Vesicoureteral , Humanos , Heterocigoto , Cinesinas/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Mutación , Linaje , Reflujo Vesicoureteral/genética , Secuenciación del Exoma , Laminina/genética
15.
Exp Ther Med ; 23(1): 92, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34976134

RESUMEN

Vesicoureteral reflux (VUR) is a congenital malformation carrying a high risk of recurrent urinary tract infections (UTI) and, at worst, chronic renal failure. Familial clustering implies a genetic etiology, but studies during the past few decades have demonstrated a causal gene variant in <10% of patients with VUR. The aim of the present study was to search for fully or partially shared ancestral haplotypes in 14 families from south-western Sweden with at least three affected members. High-density single nucleotide polymorphism microarray was used for genotyping prior to analysis with a compatibility matching method developed in-house, and the analysis of copy number variations (CNV). No single unique haplotype was revealed to be shared by the families, thereby excluding a common ancestry and founder mutations as a probable cause of VUR. After evaluation of haplotypes shared by subsets of families, a haplotype shared by nine families was found to be of particular interest. This haplotype, located at chromosomal region 4q21.21, harbours two tentative candidate genes (bone morphogenetic protein 3 and fibroblast growth factor 5), both expressed in metanephros and with known functions during nephrogenesis. As to CNV, only one family had a specific CNV shared by all affected members. This was a focal deletion at 5q31.1 including follistatin-like 4, a gene without a previous known connection to VUR. These data demonstrated the genetic heterogeneity of VUR and indicated that an interaction of environmental and genetic factors, including non-coding and epigenetic regulators, all contribute to the complexity of VUR.

16.
Diagnostics (Basel) ; 12(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36140661

RESUMEN

A preterm infant with central hypoventilation was diagnosed with multifocal neuroblastoma. Congenital anomalies of the autonomic nervous system in association with neuroblastoma are commonly associated with germline mutations in PHOX2B. Further, the ALK gene is frequently mutated in both familial and sporadic neuroblastoma. Sanger sequencing of ALK and PHOX2B, SNP microarray of three tumor samples and whole genome sequencing of tumor and blood were performed. Genetic testing revealed a germline ALK F1174I mutation that was present in all tumor samples as well as in normal tissue samples from the patient. Neither of the patient's parents presented the ALK variant. Array profiling of the three tumor samples showed that two of them had only numerical aberrations, whereas one sample displayed segmental alterations, including a gain at chromosome 2p, resulting in two copies of the ALK-mutated allele. Whole genome sequencing confirmed the presence of the ALK variant and did not detect any aberrations in the coding or promotor region of PHOX2B. This study is to our knowledge the first to report a de novoALK F1174I germline mutation. This may not only predispose to congenital multifocal neuroblastoma but may also contribute to the respiratory dysfunction seen in this patient.

17.
Sci Rep ; 12(1): 12420, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859155

RESUMEN

In neuroblastoma, MYCN amplification and 11q-deletion are important, although incomplete, markers of high-risk disease. It is therefore relevant to characterize additional alterations that can function as prognostic and/or predictive markers. Using SNP-microarrays, a group of neuroblastoma patients showing amplification of one or multiple 12q loci was identified. Two loci containing CDK4 and MDM2 were commonly co-amplified, although amplification of either locus in the absence of the other was observed. Pharmacological inhibition of CDK4/6 with ribociclib or abemaciclib decreased proliferation in a broad set of neuroblastoma cell lines, including CDK4/MDM2-amplified, whereas MDM2 inhibition by Nutlin-3a was only effective in p53wild-type cells. Combined CDK4/MDM2 targeting had an additive effect in p53wild-type cell lines, while no or negative additive effect was observed in p53mutated cells. Most 12q-amplified primary tumors were of abdominal origin, including those of intrarenal origin initially suspected of being Wilms' tumor. An atypical metastatic pattern was also observed with low degree of bone marrow involvement, favoring other sites such as the lungs. Here we present detailed biological data of an aggressive neuroblastoma subgroup hallmarked by 12q amplification and atypical clinical presentation for which our in vitro studies indicate that CDK4 and/or MDM2 inhibition also could be beneficial.


Asunto(s)
Neuroblastoma , Proteínas Proto-Oncogénicas c-mdm2 , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Amplificación de Genes , Humanos , Neuroblastoma/patología , Pronóstico , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885154

RESUMEN

Childhood medulloblastoma and high-risk neuroblastoma frequently present with segmental gain of chromosome 17q corresponding to aggressive tumors and poor patient prognosis. Located within the 17q-gained chromosomal segments is PPM1D at chromosome 17q23.2. PPM1D encodes a serine/threonine phosphatase, WIP1, that is a negative regulator of p53 activity as well as key proteins involved in cell cycle control, DNA repair and apoptosis. Here, we show that the level of PPM1D expression correlates with chromosome 17q gain in medulloblastoma and neuroblastoma cells, and both medulloblastoma and neuroblastoma cells are highly dependent on PPM1D expression for survival. Comparison of different inhibitors of WIP1 showed that SL-176 was the most potent compound inhibiting medulloblastoma and neuroblastoma growth and had similar or more potent effects on cell survival than the MDM2 inhibitor Nutlin-3 or the p53 activator RITA. SL-176 monotherapy significantly suppressed the growth of established medulloblastoma and neuroblastoma xenografts in nude mice. These results suggest that the development of clinically applicable compounds inhibiting the activity of WIP1 is of importance since PPM1D activating mutations, genetic gain or amplifications and/or overexpression of WIP1 are frequently detected in several different cancers.

19.
Cancers (Basel) ; 13(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771656

RESUMEN

PPM1D is a negative regulator of p53 and genomic aberrations resulting in increased activity of PPM1D have been observed in cancers of different origins, indicating that PPM1D has oncogenic properties. We established a transgenic mouse model overexpressing PPM1D and showed that these mice developed a wide variety of cancers. PPM1D-expressing mice developed tumors phenotypically and genetically similar to tumors in mice with dysfunctional p53. T-cell lymphoblastic lymphoma was the most frequent cancer observed in these mice (55%) followed by adenocarcinomas (24%), leukemia (12%) and other solid tumors including neuroblastoma. Characterization of T-cell lymphomas in mice overexpressing PPM1D demonstrates Pten-deletion and p53-accumulation similar to mice with p53 loss-of-function. Also, Notch1 mutations which are recurrently observed in T-cell acute lymphoblastic lymphoma (T-ALL) were frequently detected in PPM1D-transgenic mice. Hence, PPM1D acts as an oncogenic driver in connection with cellular stress, suggesting that the PPM1D gene status and expression levels should be investigated in TP53 wild-type tumors.

20.
Sci Rep ; 10(1): 22432, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33384420

RESUMEN

Neuroblastoma is the most common and deadly childhood tumor. Relapsed or refractory neuroblastoma has a very poor prognosis despite recent treatment advances. To investigate genomic alterations associated with relapse and therapy resistance, whole-genome sequencing was performed on diagnostic and relapsed lesions together with constitutional DNA from seven children. Sequencing of relapsed tumors indicates somatic alterations in diverse genes, including those involved in RAS-MAPK signaling, promoting cell cycle progression or function in telomere maintenance and immortalization. Among recurrent alterations, CCND1-gain, TERT-rearrangements, and point mutations in POLR2A, CDK5RAP, and MUC16 were shown in ≥ 2 individuals. Our cohort contained examples of converging genomic alterations in primary-relapse tumor pairs, indicating dependencies related to specific genetic lesions. We also detected rare genetic germline variants in DNA repair genes (e.g., BARD1, BRCA2, CHEK2, and WRN) that might cooperate with somatically acquired variants in these patients with highly aggressive recurrent neuroblastoma. Our data indicate the importance of monitoring recurrent neuroblastoma through sequential genomic characterization and that new therapeutic approaches combining the targeting of MAPK signaling, cell cycle progression, and telomere activity are required for this challenging patient group.


Asunto(s)
Mutación , Neuroblastoma/genética , Neuroblastoma/patología , Homeostasis del Telómero/genética , Telómero/genética , Secuenciación Completa del Genoma , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor , Variaciones en el Número de Copia de ADN , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia , Neuroblastoma/metabolismo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA