Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(26): e2300387120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339200

RESUMEN

Transitions between wake and sleep states show a progressive pattern underpinned by local sleep regulation. In contrast, little evidence is available on non-rapid eye movement (NREM) to rapid eye movement (REM) sleep boundaries, considered as mainly reflecting subcortical regulation. Using polysomnography (PSG) combined with stereoelectroencephalography (SEEG) in humans undergoing epilepsy presurgical evaluation, we explored the dynamics of NREM-to-REM transitions. PSG was used to visually score transitions and identify REM sleep features. SEEG-based local transitions were determined automatically with a machine learning algorithm using features validated for automatic intra-cranial sleep scoring (10.5281/zenodo.7410501). We analyzed 2988 channel-transitions from 29 patients. The average transition time from all intracerebral channels to the first visually marked REM sleep epoch was 8 s ± 1 min 58 s, with a great heterogeneity between brain areas. Transitions were observed first in the lateral occipital cortex, preceding scalp transition by 1 min 57 s ± 2 min 14 s (d = -0.83), and close to the first sawtooth wave marker. Regions with late transitions were the inferior frontal and orbital gyri (1 min 1 s ± 2 min 1 s, d = 0.43, and 1 min 1 s ± 2 min 5 s, d = 0.43, after scalp transition). Intracranial transitions were earlier than scalp transitions as the night advanced (last sleep cycle, d = -0.81). We show a reproducible gradual pattern of REM sleep initiation, suggesting the involvement of cortical mechanisms of regulation. This provides clues for understanding oneiric experiences occurring at the NREM/REM boundary.


Asunto(s)
Sueño REM , Sueño , Humanos , Sueño REM/fisiología , Sueño/fisiología , Corteza Cerebral/fisiología , Polisomnografía , Lóbulo Frontal , Electroencefalografía , Fases del Sueño/fisiología
2.
J Neurosci ; 44(16)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38471781

RESUMEN

As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions (p < 0.05; d = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes (p < 0.05; d = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals (p < 0.05 in 22 regions; d = 0.10-0.39), while it widely decreased during non-SW arousals (p < 0.05 in 19 regions; d = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals.


Asunto(s)
Electrocorticografía , Cuero Cabelludo , Femenino , Humanos , Sueño/fisiología , Nivel de Alerta/fisiología , Vigilia/fisiología , Electroencefalografía/métodos
3.
Brain ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875488

RESUMEN

Epileptic seizures recorded with stereoelectroencephalography (SEEG) can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and SEEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread, and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared to regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-IV). The seizure onset zone was more tract connected to regions of seizure spread than to non-involved regions (p<0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared to non-involved regions. In seizure free patients only, regions of seizure spread were more tract connected to the seizure onset zone than to other regions of spread (p<0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract connected to regions of early spread compared to regions of late spread in seizure free patients only (p<0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone may be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds may be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship may eventually provide insight into selecting the correct targets for epilepsy surgery.

4.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701342

RESUMEN

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Asunto(s)
Lobectomía Temporal Anterior , Conectoma , Epilepsia del Lóbulo Temporal , Lóbulo Temporal , Humanos , Femenino , Masculino , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/patología , Lóbulo Temporal/patología , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lobectomía Temporal Anterior/métodos , Persona de Mediana Edad , Adulto Joven , Imagen de Difusión Tensora , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/patología , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/patología
5.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325327

RESUMEN

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Asunto(s)
Electrocorticografía , Humanos , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Adulto Joven , Adolescente , Electroencefalografía/métodos , Persona de Mediana Edad , Epilepsia/fisiopatología , Epilepsia/cirugía , Niño , Ondas Encefálicas/fisiología , Encéfalo/fisiopatología
6.
Curr Opin Neurol ; 37(2): 134-140, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230652

RESUMEN

PURPOSE OF REVIEW: Clinical electroencephalography (EEG) is a conservative medical field. This explains likely the significant gap between clinical practice and new research developments. This narrative review discusses possible causes of this discrepancy and how to circumvent them. More specifically, we summarize recent advances in three applications of clinical EEG: source imaging (ESI), high-frequency oscillations (HFOs) and EEG in critically ill patients. RECENT FINDINGS: Recently published studies on ESI provide further evidence for the accuracy and clinical utility of this method in the multimodal presurgical evaluation of patients with drug-resistant focal epilepsy, and opened new possibilities for further improvement of the accuracy. HFOs have received much attention as a novel biomarker in epilepsy. However, recent studies questioned their clinical utility at the level of individual patients. We discuss the impediments, show up possible solutions and highlight the perspectives of future research in this field. EEG in the ICU has been one of the major driving forces in the development of clinical EEG. We review the achievements and the limitations in this field. SUMMARY: This review will promote clinical implementation of recent advances in EEG, in the fields of ESI, HFOs and EEG in the intensive care.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/cirugía
7.
Hum Brain Mapp ; 45(10): e26720, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38994740

RESUMEN

Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.


Asunto(s)
Electroencefalografía , Entropía , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Electroencefalografía/métodos , Adulto , Femenino , Masculino , Simulación por Computador , Adulto Joven , Epilepsia/fisiopatología , Epilepsia/diagnóstico por imagen , Persona de Mediana Edad , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Modelos Neurológicos
8.
Ann Neurol ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712215

RESUMEN

OBJECTIVE: Sleep has important influences on focal interictal epileptiform discharges (IEDs), and the rates and spatial extent of IEDs are increased in non-rapid eye movement (NREM) sleep. In contrast, the influence of sleep on seizures is less clear, and its effects on seizure topography are poorly documented. We evaluated the influences of NREM sleep on ictal spatiotemporal dynamics and contrasted these with interictal network dynamics. METHODS: We included patients with drug-resistant focal epilepsy who underwent continuous intracranial electroencephalography (iEEG) with depth electrodes. Patients were selected if they had 1 to 3 seizures from each vigilance state, wakefulness and NREM sleep, within a 48-hour window, and under the same antiseizure medication. A 10-minute epoch of the interictal iEEG was selected per state, and IEDs were detected automatically. A total of 25 patients (13 women; aged 32.5 ± 7.1 years) were included. RESULTS: The seizure onset pattern, duration, spatiotemporal propagation, and latency of ictal high-frequency activity did not differ significantly between wakefulness and NREM sleep (all p > 0.05). In contrast, IED rates and spatial distribution were increased in NREM compared with wakefulness (p < 0.001, Cliff's d = 0.48 and 0.49). The spatial overlap between vigilance states was higher for seizures (57.1 ± 40.1%) than IEDs (41.7 ± 46.2%; p = 0.001, Cliff's d = 0.51). INTERPRETATION: In contrast to its effects on IEDs, NREM sleep does not affect ictal spatiotemporal dynamics. This suggests that once the brain surpasses the seizure threshold, it will follow the underlying epileptic network irrespective of the vigilance state. These findings offer valuable insights into neural network dynamics in epilepsy and have important clinical implications for localizing seizure foci. ANN NEUROL 2023.

9.
Ann Neurol ; 93(3): 522-535, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36373178

RESUMEN

OBJECTIVE: Epileptic spikes are the traditional interictal electroencephalographic (EEG) biomarker for epilepsy. Given their low specificity for identifying the epileptogenic zone (EZ), they are given only moderate attention in presurgical evaluation. This study aims to demonstrate that it is possible to identify specific spike features in intracranial EEG that optimally define the EZ and predict surgical outcome. METHODS: We analyzed spike features on stereo-EEG segments from 83 operated patients from 2 epilepsy centers (37 Engel IA) in wakefulness, non-rapid eye movement sleep, and rapid eye movement sleep. After automated spike detection, we investigated 135 spike features based on rate, morphology, propagation, and energy to determine the best feature or feature combination to discriminate the EZ in seizure-free and non-seizure-free patients by applying 4-fold cross-validation. RESULTS: The rate of spikes with preceding gamma activity in wakefulness performed better for surgical outcome classification (4-fold area under receiver operating characteristics curve [AUC] = 0.755 ± 0.07) than the seizure onset zone, the current gold standard (AUC = 0.563 ± 0.05, p = 0.015) and the ripple rate, an emerging seizure-independent biomarker (AUC = 0.537 ± 0.07, p = 0.006). Channels with a spike-gamma rate exceeding 1.9/min had an 80% probability of being in the EZ. Combining features did not improve the results. INTERPRETATION: Resection of brain regions with high spike-gamma rates in wakefulness is associated with a high probability of achieving seizure freedom. This rate could be applied to determine the minimal number of spiking channels requiring resection. In addition to quantitative analysis, this feature is easily accessible to visual analysis, which could aid clinicians during presurgical evaluation. ANN NEUROL 2023;93:522-535.


Asunto(s)
Epilepsia , Humanos , Epilepsia/cirugía , Convulsiones/diagnóstico , Electroencefalografía/métodos , Encéfalo/cirugía , Biomarcadores
10.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420750

RESUMEN

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Asunto(s)
Consenso , Técnica Delphi , Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/normas , Epilepsia/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/diagnóstico
11.
Brain ; 146(9): 3923-3937, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37082950

RESUMEN

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/patología , Calidad de Vida , Encéfalo/patología , Imagen por Resonancia Magnética , Mapeo Encefálico
12.
Epilepsy Behav ; 155: 109722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643660

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is typically associated with pathology of the hippocampus, a key structure involved in relational memory, including episodic, semantic, and spatial memory processes. While it is widely accepted that TLE-associated hippocampal alterations underlie memory deficits, it remains unclear whether impairments relate to a specific cognitive domain or multiple ones. METHODS: We administered a recently validated task paradigm to evaluate episodic, semantic, and spatial memory in 24 pharmacoresistant TLE patients and 50 age- and sex-matched healthy controls. We carried out two-way analyses of variance to identify memory deficits in individuals with TLE relative to controls across different relational memory domains, and used partial least squares correlation to identify factors contributing to variations in relational memory performance across both cohorts. RESULTS: Compared to controls, TLE patients showed marked impairments in episodic and spatial memory, with mixed findings in semantic memory. Even when additionally controlling for age, sex, and overall cognitive function, between-group differences persisted along episodic and spatial domains. Moreover, age, diagnostic group, and hippocampal volume were all associated with relational memory behavioral phenotypes. SIGNIFICANCE: Our behavioral findings show graded deficits across relational memory domains in people with TLE, which provides further insights into the complex pattern of cognitive impairment in the condition.


Asunto(s)
Epilepsia del Lóbulo Temporal , Trastornos de la Memoria , Memoria Episódica , Humanos , Epilepsia del Lóbulo Temporal/psicología , Epilepsia del Lóbulo Temporal/complicaciones , Masculino , Femenino , Adulto , Trastornos de la Memoria/etiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Hipocampo/patología , Adulto Joven , Memoria Espacial/fisiología , Semántica
13.
Neuroimage ; 274: 120158, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37149236

RESUMEN

BACKGROUND: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and requires validation. METHOD: We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-ieegatlas. RESEARCH: mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. RESULTS: The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic components were removed. CONCLUSION: This study identifies brain regions and frequencies for which MEG source analysis is likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive MEG studies.


Asunto(s)
Electrocorticografía , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Electrocorticografía/métodos , Encéfalo , Mapeo Encefálico/métodos , Electroencefalografía/métodos
14.
Ann Neurol ; 91(3): 404-416, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34981563

RESUMEN

OBJECTIVE: This study was undertaken to follow up predictive factors for α-synuclein-related neurodegenerative diseases in a multicenter cohort of idiopathic/isolated rapid eye movement sleep behavior disorder (iRBD). METHODS: Patients with iRBD from 12 centers underwent a detailed assessment for potential environmental and lifestyle risk factors via a standardized questionnaire at baseline. Patients were then prospectively followed and received assessments for parkinsonism or dementia during follow-up. The cumulative incidence of parkinsonism or dementia was estimated with competing risk analysis. Cox regression analyses were used to evaluate the predictive value of environmental/lifestyle factors over a follow-up period of 11 years, adjusting for age, sex, and center. RESULTS: Of 319 patients who were free of parkinsonism or dementia, 281 provided follow-up information. After a mean follow-up of 5.8 years, 130 (46.3%) patients developed neurodegenerative disease. The overall phenoconversion rate was 24.2% after 3 years, 44.8% after 6 years, and 67.5% after 10 years. Patients with older age (adjusted hazard ratio [aHR] = 1.05) and nitrate derivative use (aHR = 2.18) were more likely to phenoconvert, whereas prior pesticide exposure (aHR = 0.21-0.64), rural living (aHR = 0.53), lipid-lowering medication use (aHR = 0.59), and respiratory medication use (aHR = 0.36) were associated with lower phenoconversion risk. Risk factors for those converting to primary dementia and parkinsonism were generally similar, with dementia-first converters having lower coffee intake and beta-blocker intake, and higher occurrence of family history of dementia. INTERPRETATION: Our findings elucidate the predictive values of environmental factors and comorbid conditions in identifying RBD patients at higher risk of phenoconversion. ANN NEUROL 2022;91:404-416.


Asunto(s)
Demencia/epidemiología , Enfermedades Neurodegenerativas/epidemiología , Trastorno de la Conducta del Sueño REM/complicaciones , Anciano , Demencia/etiología , Progresión de la Enfermedad , Estudios de Seguimiento , Humanos , Incidencia , Estilo de Vida , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/etiología , Factores de Riesgo , Encuestas y Cuestionarios
15.
Epilepsia ; 64 Suppl 3: S3-S12, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37226640

RESUMEN

Sleep and wake are defined through physiological and behavioral criteria and can be typically separated into non-rapid eye movement (NREM) sleep stages N1, N2, and N3, rapid eye movement (REM) sleep, and wake. Sleep and wake states are not homogenous in time. Their properties vary during the night and day cycle. Given that brain activity changes as a function of NREM, REM, and wake during the night and day cycle, are seizures more likely to occur during NREM, REM, or wake at a specific time? More generally, what is the relationship between sleep-wake cycles and epilepsy? We will review specific examples from clinical data and results from experimental models, focusing on the diversity and heterogeneity of these relationships. We will use a top-down approach, starting with the general architecture of sleep, followed by oscillatory activities, and ending with ionic correlates selected for illustrative purposes, with respect to seizures and interictal spikes. The picture that emerges is that of complexity; sleep disruption and pathological epileptic activities emerge from reorganized circuits. That different circuit alterations can occur across patients and models may explain why sleep alterations and the timing of seizures during the sleep-wake cycle are patient-specific.


Asunto(s)
Epilepsia , Fases del Sueño , Humanos , Fases del Sueño/fisiología , Sueño/fisiología , Epilepsia/patología , Sueño REM/fisiología , Convulsiones , Electroencefalografía/métodos
16.
Epilepsia ; 64(11): 3036-3048, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37714213

RESUMEN

OBJECTIVE: Rapid eye movement (REM) sleep reduces the rate and extent of interictal epileptiform discharges (IEDs). Breakthrough epileptic activity during REM sleep is therefore thought to best localize the seizure onset zone (SOZ). We utilized polysomnography combined with direct cortical recordings to investigate the influences of anatomical locations and the time of night on the suppressive effect of REM sleep on IEDs. METHODS: Forty consecutive patients with drug-resistant focal epilepsy underwent combined polysomnography and stereo-electroencephalography during presurgical evaluation. Ten-minute interictal epochs were selected 2 h prior to sleep onset (wakefulness), and from the first and second half of the night during non-REM (NREM) sleep and REM sleep. IEDs were detected automatically across all channels. Anatomic localization, time of night, and channel type (within or outside the SOZ) were tested as modulating factors. RESULTS: Relative to wakefulness, there was a suppression of IEDs by REM sleep in neocortical regions (median = -27.6%), whereas mesiotemporal regions showed an increase in IEDs (19.1%, p = .01, d = .39). This effect was reversed when comparing the regional suppression of IEDs by REM sleep relative to NREM sleep (-35.1% in neocortical, -58.7% in mesiotemporal, p < .001, d = .39). Across all patients, no clinically relevant novel IED regions were observed in REM sleep versus NREM or wakefulness based on our predetermined thresholds (4 IEDs/min in REM, 0 IEDs/min in NREM and wakefulness). Finally, there was a reduction in IEDs in late (NREM: 1.08/min, REM: .61/min) compared to early sleep (NREM: 1.22/min, REM: .69/min) for both NREM (p < .001, d = .21) and REM (p = .04, d = .14). SIGNIFICANCE: Our results demonstrate a spatiotemporal effect of IED suppression by REM sleep relative to wakefulness in neocortical but not mesiotemporal regions, and in late versus early sleep. This suggests the importance of considering sleep stage interactions and the potential influences of anatomical locations when using IEDs to define the epileptic focus.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Neocórtex , Humanos , Sueño REM , Sueño , Electroencefalografía/métodos
17.
Epilepsia ; 64 Suppl 3: S49-S61, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37194746

RESUMEN

Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/terapia , Encéfalo , Convulsiones/terapia , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/terapia , Estimulación Encefálica Profunda/métodos , Biomarcadores
18.
Epilepsia ; 64(4): 962-972, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764672

RESUMEN

OBJECTIVE: High-frequency oscillations are considered among the most promising interictal biomarkers of the epileptogenic zone in patients suffering from pharmacoresistant focal epilepsy. However, there is no clear definition of pathological high-frequency oscillations, and the existing detectors vary in methodology, performance, and computational costs. This study proposes relative entropy as an easy-to-use novel interictal biomarker of the epileptic tissue. METHODS: We evaluated relative entropy and high-frequency oscillation biomarkers on intracranial electroencephalographic data from 39 patients with seizure-free postoperative outcome (Engel Ia) from three institutions. We tested their capability to localize the epileptogenic zone, defined as resected contacts located in the seizure onset zone. The performance was compared using areas under the receiver operating curves (AUROCs) and precision-recall curves. Then we tested whether a universal threshold can be used to delineate the epileptogenic zone across patients from different institutions. RESULTS: Relative entropy in the ripple band (80-250 Hz) achieved an average AUROC of .85. The normalized high-frequency oscillation rate in the ripple band showed an identical AUROC of .85. In contrast to high-frequency oscillations, relative entropy did not require any patient-level normalization and was easy and fast to calculate due to its clear and straightforward definition. One threshold could be set across different patients and institutions, because relative entropy is independent of signal amplitude and sampling frequency. SIGNIFICANCE: Although both relative entropy and high-frequency oscillations have a similar performance, relative entropy has significant advantages such as straightforward definition, computational speed, and universal interpatient threshold, making it an easy-to-use promising biomarker of the epileptogenic zone.


Asunto(s)
Electroencefalografía , Epilepsia , Humanos , Entropía , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , Electrocorticografía/métodos , Biomarcadores
19.
Epilepsia ; 64(11): 3049-3060, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37592755

RESUMEN

OBJECTIVE: Focal cortical dysplasia (FCD), hippocampal sclerosis (HS), nonspecific gliosis (NG), and normal tissue (NT) comprise the majority of histopathological results of surgically treated drug-resistant epilepsy patients. Epileptic spikes, high-frequency oscillations (HFOs), and connectivity measures are valuable biomarkers of epileptogenicity. The question remains whether they could also be utilized for preresective differentiation of the underlying brain pathology. This study explored spikes and HFOs together with functional connectivity in various epileptogenic pathologies. METHODS: Interictal awake stereoelectroencephalographic recordings of 33 patients with focal drug-resistant epilepsy with seizure-free postoperative outcomes were analyzed (15 FCD, 8 HS, 6 NT, and 4 NG). Interictal spikes and HFOs were automatically identified in the channels contained in the overlap of seizure onset zone and resected tissue. Functional connectivity measures (relative entropy, linear correlation, cross-correlation, and phase consistency) were computed for neighboring electrode pairs. RESULTS: Statistically significant differences were found between the individual pathologies in HFO rates, spikes, and their characteristics, together with functional connectivity measures, with the highest values in the case of HS and NG/NT. A model to predict brain pathology based on all interictal measures achieved up to 84.0% prediction accuracy. SIGNIFICANCE: The electrophysiological profile of the various epileptogenic lesions in epilepsy surgery patients was analyzed. Based on this profile, a predictive model was developed. This model offers excellent potential to identify the nature of the underlying lesion prior to resection. If validated, this model may be particularly valuable for counseling patients, as depending on the lesion type, different outcomes are achieved after epilepsy surgery.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Técnicas Estereotáxicas , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía
20.
Epilepsia ; 64(4): 998-1011, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764677

RESUMEN

OBJECTIVE: Temporal lobe epilepsy (TLE) is the most common pharmacoresistant epilepsy in adults. Here we profiled local neural function in TLE in vivo, building on prior evidence that has identified widespread structural alterations. Using resting-state functional magnetic resonance imaging (rs-fMRI), we mapped the whole-brain intrinsic neural timescales (INT), which reflect temporal hierarchies of neural processing. Parallel analysis of structural and diffusion MRI data examined associations with TLE-related structural compromise. Finally, we evaluated the clinical utility of INT. METHODS: We studied 46 patients with TLE and 44 healthy controls from two independent sites, and mapped INT changes in patients relative to controls across hippocampal, subcortical, and neocortical regions. We examined region-specific associations to structural alterations and explored the effects of age and epilepsy duration. Supervised machine learning assessed the utility of INT for identifying patients with TLE vs controls and left- vs right-sided seizure onset. RESULTS: Relative to controls, TLE showed marked INT reductions across multiple regions bilaterally, indexing faster changing resting activity, with strongest effects in the ipsilateral medial and lateral temporal regions, and bilateral sensorimotor cortices as well as thalamus and hippocampus. Findings were similar, albeit with reduced effect sizes, when correcting for structural alterations. INT reductions in TLE increased with advancing disease duration, yet findings differed from the aging effects seen in controls. INT-derived classifiers discriminated patients vs controls (balanced accuracy, 5-fold: 76% ± 2.65%; cross-site, 72%-83%) and lateralized the focus in TLE (balanced accuracy, 5-fold: 96% ± 2.10%; cross-site, 95%-97%), with high accuracy and cross-site generalizability. Findings were consistent across both acquisition sites and robust when controlling for motion and several methodological confounds. SIGNIFICANCE: Our findings demonstrate atypical macroscale function in TLE in a topography that extends beyond mesiotemporal epicenters. INT measurements can assist in TLE diagnosis, seizure focus lateralization, and monitoring of disease progression, which emphasizes promising clinical utility.


Asunto(s)
Epilepsia del Lóbulo Temporal , Adulto , Humanos , Epilepsia del Lóbulo Temporal/diagnóstico , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Lóbulo Temporal , Convulsiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA