Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Clin Immunol ; 262: 110166, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432423

RESUMEN

BACKGROUND: Amoxicillin (AX) and clavulanic acid (CLV) are the betalactam antibiotics (BLs) most used to treat bacterial infections, although they can trigger immediate hypersensitivity reactions (IDHRs). The maturation analysis of monocyte-derived dendritic cells (moDCs) and their capacity to induce proliferative response of lymphocytes are useful to test the sensitisation to a drug, although without optimal sensitivity. Nevertheless, this can be improved using directly isolated DCs such as myeloid DCs (mDCs). METHODS: mDCs and moDCs were obtained from 28 allergic patients (AP), 14 to AX, 14 to CLV and from 10 healthy controls (HC). The expression of CCR7, CD40, CD80, CD83, and CD86 was analysed after stimulation with both BLs. We measured the capacity of these pre-primed DCs to induce drug-specific activation of different lymphocyte subpopulations, CD3+, CD4+, CD8+, CD4+Th1, and CD4+Th2, by flow cytometry. RESULTS: Higher expression of CCR7, CD40, CD80, CD83, and CD86 was observed on mDCs compared to moDCs from AP after stimulating with the culprit BL. Similarly, mDCs induced higher proliferative response, mainly of CD4+Th2 cells, compared to moDCs, reaching up to 67% of positive results with AX, whereas of only 25% with CLV. CONCLUSIONS: mDCs from selective AP efficiently recognise the culprit drug which trigger the IDHR. mDCs also trigger proliferation of lymphocytes, mainly those with a Th2 cytokine pattern, although these responses depend on the nature of the drug, mimicking the patient's reaction.


Asunto(s)
Hipersensibilidad Inmediata , Hipersensibilidad , Humanos , Receptores CCR7/metabolismo , Citocinas/metabolismo , Amoxicilina/metabolismo , Hipersensibilidad/metabolismo , Ácido Clavulánico/metabolismo , Antígenos CD40 , Células Dendríticas/metabolismo
2.
Allergy ; 78(10): 2745-2755, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36478407

RESUMEN

BACKGROUND: Amoxicillin (AX) combined or not with clavulanic acid (CLV) is frequently involved in IgE-mediated reactions. Drug provocation test (DPT) is considered as the gold standard for diagnosis, although contraindicated in high-risk patients. Basophil activation test (BAT) can help diagnose immediate reactions to beta-lactams, although controversy exists regarding the best activation marker. We have performed a real-life study in a prospective cohort to analyze the real value of BAT as diagnostic tool and the best activation marker, CD63 and CD203c, for the evaluation of immediate reactions to these drugs. METHODS: We prospectively evaluated patients with a clinical suspicion of immediate reactions after AX or AX-CLV administration during a 6-year period. The allergological work-up was done following the EAACI recommendations. BAT was performed in all patients using CD63 and CD203c as activation markers. RESULTS: In AX-allergic patients, both activation markers, CD63 and CD203c, showed similar SE values (48.6% and 46.7%, respectively); however, specificity was of 81.1% and 94.6%, respectively, with CD203c showing good positive predictive value and like-hood ratio. In CLV-allergic patients, CD203c showed higher SE (50%) than CD63 (42.9%), maintaining the same value of SP (80%). Combining the results of both markers can slightly increase the sensitivity (51.4% for AX and 54.8% for CLV), although decreasing the specificity (79.7% and 73%, respectively). Interestingly, all patients with an anaphylactic shock showed a positive BAT to CLV using CD203c. CONCLUSIONS: BAT using CD203c showed a good confirmatory power, especially for AX allergy. Placing BAT as a first step in the diagnostic procedure can help reduce the need of performing a complete allergological work-up in 46.6% of patients, diminishing the risk of reinducing allergic reactions.


Asunto(s)
Anafilaxia , Hipersensibilidad Inmediata , Humanos , Amoxicilina/efectos adversos , Estudios Prospectivos , Hipersensibilidad Inmediata/diagnóstico , Basófilos , Prueba de Desgranulación de los Basófilos/métodos , Anafilaxia/diagnóstico , Anafilaxia/etiología , Ácido Clavulánico , Tetraspanina 30
3.
Cytotherapy ; 24(3): 320-333, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033424

RESUMEN

BACKGROUND: Automated growth-based methods for sterility testing of cell-therapy products should be qualified to demonstrate that they are equivalent to, or better than, the conventional reference method. The aim of the present study was to assess the ability of the BACTEC FX40 system to detect low microbial contamination and to confirm the suitability of the method in the presence of seven different human mesenchymal cell-based products, according to Ph. Eur. 2.6.27. Additionally, a study to select the best vial to detect fungus contamination was performed. METHODS: Microorganisms representing Gram-negative, Gram-positive, aerobic, anaerobic, spore-forming, slow-growing bacteria, yeast and mold were prepared in either Dulbecco's PBS or seven biological matrices containing approximately 5, 10, and 15 colony-forming units (CFU) per sample. These preparations were inoculated to the specific media required for each test method: (i) BACTEC aerobic and anaerobic vials; (ii) aerobic and anaerobic media for direct inoculation; and (iii) Trypcase soy 3P or Brucella blood agar plates. Colonies from cultures were identified using MALDI-TOF mass spectrometry. RESULTS: The BACTEC FX40 system, in both Dulbecco's PBS and the biological matrices with a 5-CFU inoculum, detected most of the microorganisms significantly faster than the conventional method, despite the presence of a matrix containing gentamicin and several matrices containing 10% DMSO. Conversely, it showed an extremely delayed detection of Candida albicans compared with the conventional method. The addition of a Mycosis IC/F (MYC) vial decreased radically the time to detection (TTD) of C. albicans (28.2 ± 1.8 h) compared with the conventional method (36 h). CONCLUSIONS: When a MYC vial was added to the standard aerobic and anaerobic vials to test each sample, BACTEC FX40 was shown to be a superior alternative sterility method for cell-therapy products contaminated with low inocula, with a faster TTD for microbial growth compared with the conventional method (5 versus 14 days). The studies were carried out in different cell-based matrices with sensitivities and specificities of 100% for all the tested strains at 15-, 10- and 5-CFU inoculum, with the exception of Kocuria rhizophila at 5 CFU (90.48% sensitivity and 100% specificity).


Asunto(s)
Candida albicans , Infertilidad , Tratamiento Basado en Trasplante de Células y Tejidos , Medios de Cultivo , Contaminación de Medicamentos , Humanos
4.
Oncologist ; 25(12): e1990-e1995, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32721059

RESUMEN

BACKGROUND: Prostate cancer is the most incident and one of the deadliest male cancers in Latin America. Treatment for patients with metastatic castration-resistant prostate cancer (mCRPC) includes androgen receptor signaling inhibitors such as abiraterone and enzalutamide, for which androgen receptor splice variant 7 (AR-V7) has emerged as a biomarker for primary resistance. Our study sought to analyze the potential economic impact of the use of AR-V7 detection as a treatment indicator in patients with mCRPC in three Latin American countries. MATERIALS AND METHODS: A hypothetical cost prediction model for the use of noninvasive circulating tumor cell-based AR-V7 testing as a treatment indicator for patients eligible for treatment with abiraterone/enzalutamide was conducted using available information on treatment and testing costs from Mexico, Argentina, and Colombia. RESULTS: At an estimated prevalence of AR-V7 positivity of 20%, the use of upfront AR-V7 genetic testing resulted in annual net savings of $9,801,669.97, $6,390,055.75, and $3,096,780.91 in Mexico, Argentina, and Colombia, respectively. A direct relationship between AR-V7 positivity prevalence and net savings was found. CONCLUSION: The use of a noninvasive AR-V7 detection assay as a treatment indicator tool in patients eligible for treatment with abiraterone or enzalutamide in Latin America could be a cost-effective approach for the management of these patients. Additional efforts are needed to accurately determine the incidence of castration-resistant prostate cancer cases and the prevalence of AR-V7 positivity in Latin America in order to predict the potential economic benefit of its clinical use. IMPLICATIONS FOR PRACTICE: In Latin America, prostate cancer is the most frequently diagnosed cancer in men, and the burden of this disease is expected to double in this region by 2030. Noninvasive detection of androgen receptor splice variant 7 (AR-V7) is being currently validated as a predictive biomarker for benefit with androgen receptor signaling inhibitor therapy in patients with metastatic castration-resistant prostate cancer (mCRPC). This hypothetical cost-saving analysis shows that AR-V7 testing in peripheral blood of patients with CRPC eligible for treatment with abiraterone or enzalutamide might represent a cost-effective strategy to select patients who will benefit from AR-axis-directed treatment in three Latin American countries.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Androstenos , Benzamidas , Biomarcadores , Colombia/epidemiología , Resistencia a Antineoplásicos , Humanos , América Latina/epidemiología , Masculino , México/epidemiología , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Isoformas de Proteínas , Receptores Androgénicos/genética
6.
J Virol ; 89(2): 1461-7, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25378492

RESUMEN

EVER1 and EVER2 are mutated in epidermodysplasia verruciformis patients, who are susceptible to human betapapillomavirus (HPV) infection. It is unknown whether their products control the infection of other viruses. Here, we show that the expression of both genes in B cells is activated immediately after Epstein-Barr virus (EBV) infection, whereas at later stages, it is strongly repressed via activation of the NF-κB signaling pathway by latent membrane protein 1 (LMP1). Ectopic expression of EVER1 impairs the ability of EBV to infect B cells.


Asunto(s)
Epidermodisplasia Verruciforme/patología , Regulación de la Expresión Génica , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/biosíntesis , Proteínas de la Matriz Viral/metabolismo , Linfocitos B/virología , Humanos , Proteínas de la Membrana/genética
7.
PLoS Pathog ; 10(5): e1004125, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24809689

RESUMEN

The DOK1 tumor suppressor gene encodes an adapter protein that acts as a negative regulator of several signaling pathways. We have previously reported that DOK1 expression is up-regulated upon cellular stress, via the transcription factor E2F1, and down-regulated in a variety of human malignancies due to aberrant hypermethylation of its promoter. Here we show that Epstein Barr virus (EBV) infection of primary human B-cells leads to the down-regulation of DOK1 gene expression via the viral oncoprotein LMP1. LMP1 alone induces recruitment to the DOK1 promoter of at least two independent inhibitory complexes, one containing E2F1/pRB/DNMT1 and another containing at least EZH2. These events result in tri-methylation of histone H3 at lysine 27 (H3K27me3) of the DOK1 promoter and gene expression silencing. We also present evidence that the presence of additional EBV proteins leads to further repression of DOK1 expression with an additional mechanism. Indeed, EBV infection of B-cells induces DNA methylation at the DOK1 promoter region including the E2F1 responsive elements that, in turn, lose the ability to interact with E2F complexes. Treatment of EBV-infected B-cell-lines with the methyl-transferase inhibitor 5-aza-2'-deoxycytidine rescues DOK1 expression. In summary, our data show the deregulation of DOK1 gene expression by EBV and provide novel insights into the regulation of the DOK1 tumor suppressor in viral-related carcinogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Infecciones por Virus de Epstein-Barr/genética , Herpesvirus Humano 4/fisiología , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Linfocitos B/metabolismo , Linfocitos B/virología , Transformación Celular Viral/genética , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Infecciones por Virus de Epstein-Barr/inmunología , Regulación de la Expresión Génica , Silenciador del Gen , Genes Supresores de Tumor , Humanos , Fosfoproteínas/metabolismo , Cultivo Primario de Células , Proteínas de Unión al ARN/metabolismo , Proteínas de la Matriz Viral/fisiología
8.
Blood ; 124(8): 1221-31, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24951430

RESUMEN

Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure.


Asunto(s)
Betaretrovirus/genética , Terapia Genética/métodos , Vectores Genéticos/genética , Células Madre Hematopoyéticas , Lentivirus/genética , Transducción Genética , Proteínas del Envoltorio Viral/genética , Animales , Antígenos CD34 , Línea Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Macaca , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID
9.
Blood ; 119(5): 1139-50, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22117040

RESUMEN

In vivo lentiviral vector (LV)-mediated gene delivery would represent a great step forward in the field of gene therapy. Therefore, we have engineered a novel LV displaying SCF and a mutant cat endogenous retroviral glycoprotein, RDTR. These RDTR/SCF-LVs outperformed RDTR-LVs for transduction of human CD34(+) cells (hCD34(+)). For in vivo gene therapy, these novel RDTR/SCF-displaying LVs can distinguish between the target hCD34(+) cells of interest and nontarget cells. Indeed, they selectively targeted transduction to 30%-40% of the hCD34(+) cells in cord blood mononuclear cells and in the unfractionated BM of healthy and Fanconi anemia donors, resulting in the correction of CD34(+) cells in the patients. Moreover, RDTR/SCF-LVs targeted transduction to CD34(+) cells with 95-fold selectivity compared with T cells in total cord blood. Remarkably, in vivo injection of the RDTR/SCF-LVs into the BM cavity of humanized mice resulted in the highly selective transduction of candidate hCD34(+)Lin(-) HSCs. In conclusion, this new LV will facilitate HSC-based gene therapy by directly targeting these primitive cells in BM aspirates or total cord blood. Most importantly, in the future, RDTR/SCF-LVs might completely obviate ex vivo handling and simplify gene therapy for many hematopoietic defects because of their applicability to direct in vivo inoculation.


Asunto(s)
Médula Ósea/metabolismo , Terapia Genética/métodos , Vectores Genéticos/fisiología , Células Madre Hematopoyéticas/metabolismo , Hemoglobinuria Paroxística/terapia , Lentivirus/genética , Anemia Aplásica , Animales , Animales Recién Nacidos , Médula Ósea/patología , Enfermedades de la Médula Ósea , Trastornos de Fallo de la Médula Ósea , Células Cultivadas , Proteínas de Unión al ADN/genética , Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Hemoglobinuria Paroxística/genética , Hemoglobinuria Paroxística/patología , Humanos , Cadenas gamma de Inmunoglobulina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Transducción Genética
10.
Front Immunol ; 15: 1348156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333212

RESUMEN

Tertiary lymphoid structures (TLS) are ectopic lymphoid aggregates found in sites of chronic inflammation such as tumors and autoimmune diseases. The discovery that TLS formation at tumor sites correlated with good patient prognosis has triggered extensive research into various techniques to induce their formation at the tumor microenvironment (TME). One strategy is the exogenous induction of specific cytokines and chemokine expression in murine models. However, applying such systemic chemokine expression can result in significant toxicity and damage to healthy tissues. Also, the TLS formed from exogenous chemokine induction is heterogeneous and different from the ones associated with favorable prognosis. Therefore, there is a need to optimize additional approaches like immune cell engineering with lentiviral transduction to improve the TLS formation in vivo. Similarly, the genetic and epigenetic regulation of the different phases of TLS neogenesis are still unknown. Understanding these molecular regulations could help identify novel targets to induce tissue-specific TLS in the TME. This review offers a unique insight into the molecular checkpoints of the different stages and mechanisms involved in TLS formation. This review also highlights potential epigenetic targets to induce TLS neogenesis. The review further explores epigenetic therapies (epi-therapy) and ongoing clinical trials using epi-therapy in cancers. In addition, it builds upon the current knowledge of tools to generate TLS and TLS phenotyping biomarkers with predictive and prognostic clinical potential.


Asunto(s)
Neoplasias , Estructuras Linfoides Terciarias , Humanos , Ratones , Animales , Epigénesis Genética , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Quimiocinas/metabolismo , Inmunidad , Microambiente Tumoral
11.
Mol Ther ; 20(9): 1699-712, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22617109

RESUMEN

Gene transfer into quiescent T and B cells is important for gene therapy and immunotherapy approaches. Previously, we generated lentiviral vectors (LVs) pseudotyped with Edmonston (Ed) measles virus (MV) hemagglutinin (H) and fusion (F) glycoproteins (H/F-LVs), which allowed efficient transduction of quiescent human T and B cells. However, a major obstacle in the use of H/F-LVs in vivo is that most of the human population is vaccinated against measles. As the MV humoral immune response is exclusively directed against the H protein of MV, we mutated the two dominant epitopes in H, Noose, and NE. LVs pseudotyped with these mutant H-glycoproteins escaped inactivation by monoclonal antibodies (mAbs) but were still neutralized by human serum. Consequently, we took advantage of newly emerged MV-D genotypes that were less sensitive to MV vaccination due to a different glycosylation pattern. The mutation responsible was introduced into the H/F-LVs, already mutated for Noose and NE epitopes. We found that these mutant H/F-LVs could efficiently transduce quiescent lymphocytes in the presence of high concentrations of MV antibody-positive human serum. Finally, upon incubation with total blood, mimicking the in vivo situation, the mutant H/F-LVs escaped MV antibody neutralization, where the original H/F-LVs failed. Thus, these novel H/F-LVs offer perspectives for in vivo lymphocyte-based gene therapy and immunotherapy.


Asunto(s)
Linfocitos B/inmunología , Lentivirus/genética , Virus del Sarampión/genética , Linfocitos T/inmunología , Proteínas Virales de Fusión/genética , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B/citología , Linfocitos B/virología , Línea Celular Tumoral , Cricetinae , Epítopos/genética , Epítopos/inmunología , Terapia Genética , Vectores Genéticos , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicosilación , Hemaglutininas/genética , Hemaglutininas/inmunología , Humanos , Inmunidad Humoral , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/terapia , Inmunoterapia , Lentivirus/inmunología , Vacuna Antisarampión/inmunología , Virus del Sarampión/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/citología , Linfocitos T/virología , Transducción Genética , Proteínas Virales de Fusión/inmunología
12.
J Virol ; 85(12): 5975-85, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21450813

RESUMEN

Gene transfer into quiescent T and B cells is of importance for gene therapy and immunotherapy approaches to correct hematopoietic disorders. Previously, we generated lentiviral vectors (LVs) pseudotyped with the Edmonston measles virus (MV) hemagglutinin and fusion glycoproteins (Hgps and Fgps) (H/F-LVs), which, for the first time, allowed efficient transduction of quiescent human B and T cells. These target cells express both MV entry receptors used by the vaccinal Edmonston strain, CD46 and signaling lymphocyte activation molecule (SLAM). Interestingly, LVs pseudotyped with an MV Hgp, blind for the CD46 binding site, were completely inefficient for resting-lymphocyte transduction. Similarly, SLAM-blind H mutants that recognize only CD46 as the entry receptor did not allow stable LV transduction of resting T cells. The CD46-tropic LVs accomplished vector-cell binding, fusion, entry, and reverse transcription at levels similar to those achieved by the H/F-LVs, but efficient proviral integration did not occur. Our results indicate that both CD46 and SLAM binding sites need to be present in cis in the Hgp to allow successful stable transduction of quiescent lymphocytes. Moreover, the entry mechanism utilized appears to be crucial: efficient transduction was observed only when CD46 and SLAM were correctly engaged and an entry mechanism that strongly resembles macropinocytosis was triggered. Taken together, our results suggest that although vector entry can occur through the CD46 receptor, SLAM binding and subsequent signaling are also required for efficient LV transduction of quiescent lymphocytes to occur.


Asunto(s)
Antígenos CD/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Glicoproteínas/genética , Lentivirus/genética , Activación de Linfocitos , Virus del Sarampión/genética , Proteína Cofactora de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Adulto , Antígenos CD/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/virología , Humanos , Lentivirus/metabolismo , Virus del Sarampión/química , Proteína Cofactora de Membrana/genética , Pinocitosis , Receptores de Superficie Celular/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Transducción Genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
13.
Blood ; 114(15): 3173-80, 2009 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-19667401

RESUMEN

Up to now, no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes, which hampers its application in gene therapy and immunotherapy areas. Here, we report that LVs incorporating measles virus (MV) glycoproteins, H and F, on their surface allowed transduction of 50% of quiescent B cells, which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover, the naive and memory phenotypes of transduced resting B cells were maintained. Importantly, H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells, B-cell chronic lymphocytic leukemia cells, blocked in G(0)/G(1) early phase of the cell cycle. Thus, H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.


Asunto(s)
Linfocitos B/metabolismo , Vectores Genéticos , Glicoproteínas/metabolismo , VIH-1 , Virus del Sarampión , Transducción Genética/métodos , Proteínas Virales de Fusión/metabolismo , Antígenos CD/biosíntesis , Linfocitos B/patología , Línea Celular , Femenino , Fase G1 , Regulación de la Expresión Génica , Terapia Genética/métodos , Glicoproteínas/genética , Humanos , Leucemia Linfocítica Crónica de Células B , Activación de Linfocitos , Masculino , Receptores de Superficie Celular/biosíntesis , Fase de Descanso del Ciclo Celular , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Proteínas Virales de Fusión/genética
14.
Mol Ther ; 18(10): 1748-57, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20736930

RESUMEN

Efficient gene transfer into quiescent T and B lymphocytes for gene therapy or immunotherapy purposes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as immunodeficiencies, and the development of novel therapeutic strategies for cancers and acquired diseases. Lentiviral vectors (LVs) can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T and B cells. In T cells, completion of reverse transcription (RT), nuclear import, and subsequent integration of the vesicular stomatitis virus G protein pseudotyped LV (VSVG-LV) genome does not occur efficiently unless they are activated via the T-cell receptor (TCR) or by survival-cytokines inducing them to enter into the G(1b) phase of the cell cycle. Lentiviral transduction of B cells is another matter because even B-cell receptor-stimulation inducing proliferation is not sufficient to allow efficient VSVG-LV transduction. Recently, a new LV carrying the glycoproteins of measles virus (MV) at its surface was able to overcome vector restrictions in both quiescent T and B cells. Importantly, naive as well as memory T and B cells were efficiently transduced while no apparent activation, cell-cycle entry, or phenotypic switch were detected, which opens the door to a multitude of gene therapy and immunotherapy applications as reported here.


Asunto(s)
Linfocitos B/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Lentivirus/genética , Linfocitos T/metabolismo , Animales , Humanos , Inmunoterapia , Transducción Genética
15.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34680239

RESUMEN

In triple-negative breast cancer (TNBC), only 30% of patients treated with neoadjuvant chemotherapy achieve a pathological complete response after treatment and more than 90% die due to metastasis formation. The diverse clinical responses and metastatic developments are attributed to extensive intrapatient genetic heterogeneity and tumor evolution acting on this neoplasm. In this work, we aimed to evaluate genomic alterations and tumor evolution in TNBC patients with aggressive disease. We sequenced the whole exome of 16 lesions from four patients who did not respond to therapy, and took several follow-up samples, including samples from tumors before and after treatment, as well as from the lymph nodes and skin metastases. We found substantial intrapatient genetic heterogeneity, with a variable tumor mutational composition. Early truncal events were MCL1 amplifications. Metastatic lesions had deletions in RB1 and PTEN, along with TERT, AKT2, and CCNE1 amplifications. Mutational signatures 06 and 12 were mainly detected in skin metastases and lymph nodes. According to phylogenetic analysis, the lymph node metastases occurred at an early stage of TNBC development. Finally, each patient had three to eight candidate driving mutations for targeted treatments. This study delves into the genomic complexity and the phylogenetic and evolutionary development of aggressive TNBC, supporting early metastatic development, and identifies specific genetic alterations associated with a response to targeted therapies.

16.
Blood ; 112(13): 4843-52, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18812471

RESUMEN

A major limitation of current lentiviral vectors (LVs) is their inability to govern efficient gene transfer into quiescent cells such as primary T cells, which hampers their application for gene therapy. Here we generated high-titer LVs incorporating Edmonston measles virus (MV) glycoproteins H and F on their surface. They allowed efficient transduction through the MV receptors, SLAM and CD46, both present on blood T cells. Indeed, these H/F-displaying vectors outperformed by far VSV-G-LVs for the transduction of IL-7-prestimulated T cells. More importantly, a single exposure to these H/F-LVs allowed efficient gene transfer in quiescent T cells, which are not permissive for VSV-G-LVs that need cell-cycle entry into the G1b phase for efficient transduction. High-level transduction of resting memory (50%) and naive (11%) T cells with H/F-LVs, which seemed to occur mainly through SLAM, was not at cost of cell-cycle entry or of target T-cell activation. Finally, the naive or memory phenotypes of transduced resting T cells were maintained and no changes in cytokine profiles were detected, suggesting that T-cell populations were not skewed. Thus, H/F-LV transduction of resting T cells overcomes the limitation of current lentiviral vectors and may improve the efficacy of T cell-based gene therapy.


Asunto(s)
Ciclo Celular , Vectores Genéticos , Lentivirus/genética , Virus del Sarampión/genética , Linfocitos T/metabolismo , Transducción Genética/métodos , Línea Celular Tumoral , Células Cultivadas , Glicoproteínas/genética , Humanos , Leucocitos , Virus del Sarampión/química , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética
17.
Genes (Basel) ; 11(11)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33227964

RESUMEN

Triple-negative breast cancer (TNBC) presents a marked diversity at the molecular level, which promotes a clinical heterogeneity that further complicates treatment. We performed a detailed whole exome sequencing profile of 29 Mexican patients with long follow-up TNBC to identify genomic alterations associated with overall survival (OS), disease-free survival (DFS), and pathologic complete response (PCR), with the aim to define their role as molecular predictive factors of treatment response and prognosis. We detected 31 driver genes with pathogenic mutations in TP53 (53%), BRCA1/2 (27%), CDKN1B (9%), PIK3CA (9%), and PTEN (9%), and 16 operative mutational signatures. Moreover, tumors with mutations in BRCA1/2 showed a trend of sensitivity to platinum salts. We found an association between deficiency in DNA repair and surveillance genes and DFS. Across all analyzed tumors we consistently found a heterogeneous molecular complexity in terms of allelic composition and operative mutational processes, which hampered the definition of molecular traits with clinical utility. This work contributes to the elucidation of the global molecular alterations of TNBC by providing accurate genomic data that may help forthcoming studies to improve treatment and survival. This is the first study that integrates genomic alterations with a long follow-up of clinical variables in a Latin American population that is an underrepresented ethnicity in most of the genomic studies.


Asunto(s)
Mutación , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad , Adulto , Anciano , Trastornos por Deficiencias en la Reparación del ADN/genética , Femenino , Humanos , Estimación de Kaplan-Meier , Linfocitos Infiltrantes de Tumor/patología , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Secuenciación del Exoma
18.
Front Oncol ; 9: 1429, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921681

RESUMEN

Purpose: Hereditary Breast and Ovarian Cancer (HBOC) syndrome is responsible for ~5-10% of all diagnosed breast and ovarian cancers. Breast cancer is the most common malignancy and the leading cause of cancer-related mortality among women in Latin America (LA). The main objective of this study was to develop a comprehensive understanding of the genomic epidemiology of HBOC throughout the establishment of The Latin American consortium for HBOC-LACAM, consisting of specialists from 5 countries in LA and the description of the genomic results from the first phase of the study. Methods: We have recruited 403 individuals that fulfilled the criteria for HBOC from 11 health institutions of Argentina, Colombia, Guatemala, Mexico and Peru. A pilot cohort of 222 individuals was analyzed by NGS gene panels. One hundred forty-three genes were selected on the basis of their putative role in susceptibility to different hereditary cancers. Libraries were sequenced in MiSeq (Illumina, Inc.) and PGM (Ion Torrent-Thermo Fisher Scientific) platforms. Results: The overall prevalence of pathogenic variants was 17% (38/222); the distribution spanned 14 genes and varied by country. The highest relative prevalence of pathogenic variants was found in patients from Argentina (25%, 14/57), followed by Mexico (18%, 12/68), Guatemala (16%, 3/19), and Colombia (13%, 10/78). Pathogenic variants were found in BRCA1 (20%) and BRCA2 (29%) genes. Pathogenic variants were found in other 12 genes, including high and moderate risk genes such as MSH2, MSH6, MUTYH, and PALB2. Additional pathogenic variants were found in HBOC unrelated genes such as DCLRE1C, WRN, PDE11A, and PDGFB. Conclusion: In this first phase of the project, we recruited 403 individuals and evaluated the germline genetic alterations in an initial cohort of 222 patients among 4 countries. Our data show for the first time in LA the distribution of pathogenic variants in a broad set of cancer susceptibility genes in HBOC. Even though we used extended gene panels, there was still a high proportion of patients without any detectable pathogenic variant, which emphasizes the larger, unexplored genetic nature of the disease in these populations.

19.
Hum Gene Ther ; 19(2): 179-97, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18240968

RESUMEN

Efficient and safe gene modification of hematopoietic stem cells is a requirement for gene therapy of primary immunodeficiencies such as Wiskott-Aldrich syndrome. However, deregulated expression or ectopic expression in the progeny of transduced nonhematopoietic progenitor cells may lead to unwanted toxicity. We therefore analyzed the effect of ectopic expression of Wiskott-Aldrich syndrome protein (WASp) and the potential benefits of hematopoietic-specific lentiviral vectors (driven by the WAS proximal promoter). Overexpression of WASp by constitutive lentiviral vectors is highly toxic in nonhematopoietic cells because it causes dramatic changes in actin localization and polymerization that result in decreased cell viability, as evidenced by a significant growth disadvantage of WASp-overexpressing nonhematopoietic cells and increased cell death. These toxic effects do not affect cells of hematopoietic origin because, remarkably, we found that WASp cannot be readily overexpressed in T cells, even after multiple vector integrations per cell. The adverse cellular effects found after transduction of nonhematopoietic cells with constitutive lentiviral vectors are overcome by the use of transcriptionally targeted lentiviral vectors expressing WASp, which, at the same time, are efficient tools for gene therapy of WAS as demonstrated by their ability to reconstitute cellular defects from WASp-deficient mouse and human cells. We therefore postulate that transcriptionally regulated lentiviral vectors represent a safer and efficient alternative for the development of clinical protocols of WAS gene therapy.


Asunto(s)
Vectores Genéticos/genética , Sistema Hematopoyético/citología , Lentivirus/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Animales , Muerte Celular , Línea Celular , Proliferación Celular , Citoesqueleto/metabolismo , Terapia Genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Especificidad de Órganos , Proteínas Recombinantes de Fusión/metabolismo , Linfocitos T/ultraestructura , Transcripción Genética , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/patología , Síndrome de Wiskott-Aldrich/terapia
20.
Curr Gene Ther ; 8(6): 449-60, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19075628

RESUMEN

Vectors derived from retroviruses such as lentiviruses and onco-retroviruses are probably among the most suitable tools to achieve a long-term gene transfer since they allow stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses (MLV) since in contrast to the latter they can transduce non-proliferating target cells. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer approaches in vivo. Here we provide an overview of innovative approaches to upgrade lentiviral vectors for tissue or cell targeting and which have potential for in vivo gene delivery. In this overview we distinguish between three types of lentiviral vector targeting strategies (Fig 1): 1) targeting of vectors at the level of vector-cell entry through lentiviral vector surface modifications; 2) targeting at the level of transgene transcription by insertion of tissue specific promoters into lentiviral vectors; 3) a novel microRNA technology that rather than targeting the 'right' cells will 'detarget' transgene expression from non-target cells while achieving high expression in the target-cell. It is clear that each strategy is of enormous value for several gene therapy approaches but combining these three layers of transgene expression control will offer tools to really overcome several drawbacks in the field such as side-effect of off-target expression, clearance of transgene modified cells by immune response to the transgene and lack of biosecurity and efficiency in in vivo approaches.


Asunto(s)
Terapia Genética/métodos , Lentivirus/genética , Retroviridae/genética , Animales , Ingeniería Genética/métodos , Vectores Genéticos , Glicoproteínas/metabolismo , VIH-1/genética , Humanos , Sistema Inmunológico , MicroARNs/metabolismo , Regiones Promotoras Genéticas , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA