Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 359: 120997, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692031

RESUMEN

Woody invasive alien species can have profound impacts on ecosystem processes and functions, including fire regulation, which can significantly affect landscape resilience. Acacia dealbata, a widespread invasive alien plant in the Iberian Peninsula, holds well-known fire-adaptation traits (e.g., massive soil seed banks and heat-stimulated seed germination). In this study, we assess to what extent fire suppression and land-use strategies could affect the potential distribution of A. dealbata in a fire-prone transboundary protected mountain area of Portugal and Spain, using Habitat Suitability Models. Specifically, we predicted changes in habitat suitability for A. dealbata between years 2010 and 2050. We explored the potential impacts of two land-use strategies ('Business-as-usual' or 'High Nature Value farmlands') combined with three levels of fire suppression effectiveness using the biomod2 package in R. We also considered the potential effects of two climate change scenarios (RCP4.5 and RCP8.5). Our modeling approach demonstrated a strong capacity to predict habitat suitability using either climate or land-cover information alone (AUC climate = 0.947; AUC LC = 0.957). According to climate-based models, A. dealbata thrives under conditions characterized by higher precipitation seasonality, higher precipitation in the warmest month, and higher minimum temperature in the coldest month. Regarding land cover, A. dealbata thrives mainly in landscapes dominated by urban areas and evergreen forest plantations. Our models forecasted that habitat suitability by 2050 could either increase or decrease depending on the specific combinations of fire suppression, land-use, and climate scenarios. Thus, a combination of business-as-usual and fire-exclusion strategies would enhance habitat suitability for the species. Conversely, management promoting High Nature Value farmlands would decrease the available suitable habitat, particularly under low fire suppression efforts. These findings suggest that promoting sustainable farming activities could impede the spread of A. dealbata by reducing habitat availability, while strategies aiming at fire-exclusion could facilitate its expansion, likely by enabling establishment and large seed production. This study highlights the complex interplay between fire-prone invasive species, fire and land-use strategies, and climate change; and thus the need to consider the interactions between land-use and fire management to promote invasive species control and landscape resilience.


Asunto(s)
Cambio Climático , Ecosistema , Incendios , Especies Introducidas , España , Conservación de los Recursos Naturales , Portugal
2.
J Environ Manage ; 322: 116045, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067662

RESUMEN

Integrated management of biodiversity and ecosystem services (ES) in heterogeneous landscapes requires considering the potential trade-offs between conflicting objectives. The UNESCO's Biosphere Reserve zoning scheme is a suitable context to address these trade-offs by considering multiple management zones that aim to minimise conflicts between management objectives. Moreover, in Mediterranean ecosystems, management and planning also needs to consider drivers of landscape dynamics such as wildfires and traditional farming and forestry practices that have historically shaped landscapes and the biodiversity they host. In this study, we applied a conservation planning approach to prioritise the allocation of management zones under future landscape and climate scenarios. We tested different landscape management scenarios reflecting the outcomes of climate-smart and fire-smart policies. We projected the expected landscape dynamics and associated changes on the distribution of 207 vertebrate species, 4 ES and fire hazard under each scenario. We used Marxan with Zones to allocate three management zones, replicating the Biosphere Reserves zoning scheme ("Core area", "Buffer zone" and "Transition area") to address the various management objectives within the Biosphere Reserve. Our results show that to promote ES supply and biodiversity conservation, while also minimising fire hazard, the reserve will need to: i) Redefine its zoning, especially regarding Core Areas, which need a considerable expansion to help mitigate changes in biodiversity and accommodate ES supply under expected changes in climate and species distribution. ii) Revisit current management policies that will result in encroached landscapes prone to high intensity, uncontrollable wildfires with the potential to heavily damage ecosystems and compromise the supply of ES. Our results support that both climate- and fire-smart policies in the Meseta Ibérica can help develop multifunctional landscapes that help mitigate and adapt to climate change and ensure the best possible maintenance of biodiversity and ES supply under uncertain future climate conditions.


Asunto(s)
Ecosistema , Incendios , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales/métodos , Objetivos
4.
Plants (Basel) ; 10(7)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34371666

RESUMEN

The chestnut tree (Castanea spp.) is an important resource worldwide. It is cultivated due to the high value of its fruits and wood. The evolution between Castanea biodiversity and humans has resulted in the spread of chestnut genetic diversity. In 2019, the chestnut tree area worldwide was approximately 596 × 103 ha for fruit production (Southern Europe, Southwestern United States of America, and Asia). In Europe 311 × 103 t were produced. Five genetic poles can be identified: three in Greece, the northwest coast of the Iberian Peninsula, and the rest of the Mediterranean. Over the years, there have been some productivity changes, in part associated with climate change. Climate is considered one of the main drivers of biodiversity and ecosystem change. In the future, new challenges associated with climate change are expected, which could threaten this crop. It is essential to identify the impacts of climate change on chestnut trees, improving the current understanding of climate-tree interconnections. To deal with these projected changes adaptation strategies must be planned. This manuscript demonstrates the impacts of climate change on chestnut cultivation, reviewing the most recent studies on the subject. Furthermore, an analysis of possible adaptation strategies against the potentially negative impacts was studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA