Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 89(7): 3833-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25609814

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) efficiently infects only humans and chimpanzees. Although the detailed mechanisms responsible for this narrow species tropism remain elusive, recent evidence has shown that murine innate immune responses efficiently suppress HCV replication. Therefore, poor adaptation of HCV to evade and/or counteract innate immune responses may prevent HCV replication in mice. The HCV NS3-4A protease cleaves human MAVS, a key cellular adaptor protein required for RIG-I-like receptor (RLR)-dependent innate immune signaling. However, it is unclear if HCV interferes with mouse MAVS function equally well. Moreover, MAVS-dependent signaling events that restrict HCV replication in mouse cells were incompletely defined. Thus, we quantified the ability of HCV NS3-4A to counteract mouse and human MAVS. HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Moreover, replicon-encoded protease cleaved a similar fraction of both MAVS variants. Finally, FLAG-tagged MAVS proteins repressed HCV replication to similar degrees. Depending on MAVS expression, HCV replication in mouse liver cells triggered not only type I but also type III IFNs, which cooperatively repressed HCV replication. Mouse liver cells lacking both type I and III IFN receptors were refractory to MAVS-dependent antiviral effects, indicating that the HCV-induced MAVS-dependent antiviral state depends on both type I and III IFN receptor signaling. IMPORTANCE: In this study, we found that HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Therefore, it is unlikely that ineffective cleavage of mouse MAVS per se precludes HCV propagation in immunocompetent mouse liver cells. Hence, approaches to reinforce HCV replication in mouse liver cells (e.g., by expression of essential human replication cofactors) should not be thwarted by the poor ability of HCV to counteract MAVS-dependent antiviral signaling. In addition, we show that mouse MAVS induces both type I and type III IFNs, which together control HCV replication. Characterization of type I or type III-dependent interferon-stimulated genes in these cells should help to identify key murine restriction factors that preclude HCV propagation in immunocompetent mouse liver cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hepacivirus/fisiología , Hepatocitos/inmunología , Interferones/inmunología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Hepacivirus/inmunología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Interferones/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
2.
J Virol ; 88(3): 1433-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24173232

RESUMEN

Hepatitis C virus (HCV) predominantly infects human hepatocytes, although extrahepatic virus reservoirs are being discussed. Infection of cells is initiated via cell-free and direct cell-to-cell transmission routes. Cell type-specific determinants of HCV entry and RNA replication have been reported. Moreover, several host factors required for synthesis and secretion of lipoproteins from liver cells, in part expressed in tissue-specific fashion, have been implicated in HCV assembly. However, the minimal cell type-specific requirements for HCV assembly have remained elusive. Here we report that production of HCV trans-complemented particles (HCVTCP) from nonliver cells depends on ectopic expression of apolipoprotein E (ApoE). For efficient virus production by full-length HCV genomes, microRNA 122 (miR-122)-mediated enhancement of RNA replication is additionally required. Typical properties of cell culture-grown HCV (HCVcc) particles from ApoE-expressing nonliver cells are comparable to those of virions derived from human hepatoma cells, although specific infectivity of virions is modestly reduced. Thus, apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTTP), and apolipoprotein C1 (ApoC1), previously implicated in HCV assembly, are dispensable for production of infectious HCV. In the absence of ApoE, release of core protein from infected cells is reduced, and production of extracellular as well as intracellular infectivity is ablated. Since envelopment of capsids was not impaired, we conclude that ApoE acts after capsid envelopment but prior to secretion of infectious HCV. Remarkably, the lack of ApoE also abrogated direct HCV cell-to-cell transmission. These findings highlight ApoE as a host factor codetermining HCV tissue tropism due to its involvement in a late assembly step and viral cell-to-cell transmission.


Asunto(s)
Apolipoproteínas E/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , Hepatitis C/virología , Tropismo Viral , Ensamble de Virus , Apolipoproteínas E/genética , Línea Celular Tumoral , Hepacivirus/genética , Hepatitis C/genética , Humanos , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Virión/genética , Virión/fisiología
3.
PLoS Pathog ; 9(5): e1003355, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23658526

RESUMEN

Hepatitis C virus (HCV) p7 is a membrane-associated ion channel protein crucial for virus production. To analyze how p7 contributes to this process, we dissected HCV morphogenesis into sub-steps including recruitment of HCV core to lipid droplets (LD), virus capsid assembly, unloading of core protein from LDs and subsequent membrane envelopment of capsids. Interestingly, we observed accumulation of slowly sedimenting capsid-like structures lacking the viral envelope in cells transfected with HCV p7 mutant genomes which possess a defect in virion production. Concomitantly, core protein was enriched at the surface of LDs. This indicates a defect in core/capsid unloading from LDs and subsequent membrane envelopment rather than defective trafficking of core to this cellular organelle. Protease and ribonuclease digestion protection assays, rate zonal centrifugation and native, two dimensional gel electrophoresis revealed increased amounts of high-order, non-enveloped core protein complexes unable to protect viral RNA in cells transfected with p7 mutant genomes. These results suggest accumulation of capsid assembly intermediates that had not yet completely incorporated viral RNA in the absence of functional p7. Thus, functional p7 is necessary for the final steps of capsid assembly as well as for capsid envelopment. These results support a model where capsid assembly is linked with membrane envelopment of nascent RNA-containing core protein multimers, a process coordinated by p7. In summary, we provide novel insights into the sequence of HCV assembly events and essential functions of p7.


Asunto(s)
Cápside/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , ARN Viral/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología , Línea Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/virología , Hepacivirus/ultraestructura , Hepatitis C/genética , Hepatitis C/patología , Humanos , ARN Viral/genética , Proteínas Virales/genética
4.
Hepatology ; 59(1): 78-88, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23873628

RESUMEN

UNLABELLED: Only humans and chimpanzees are susceptible to chronic infection by hepatitis C virus (HCV). The restricted species tropism of HCV is determined by distinct host factor requirements at different steps of the viral life cycle. In addition, effective innate immune targeting precludes efficient propagation of HCV in nonhuman cells. Species-specificity of HCV host factor usage for cell entry and virus release has been explored. However, the reason for inefficient HCV RNA replication efficiency in mouse liver cells remains elusive. To address this, we generated novel mouse liver-derived cell lines with specific lesions in mitochondrial antiviral signaling protein (MAVS), interferon regulatory factor 3 (IRF3), or Interferon-α/ß receptor (IFNAR) by in vivo immortalization. Blunted innate immune responses in these cells modestly increased HCV RNA replication. However, ectopic expression of liver-specific human microRNA 122 (miR-122) further boosted RNA replication in all knockout cell lines. Remarkably, MAVS(-/-) miR-122 cells sustained vigorous HCV RNA replication, attaining levels comparable to the highly permissive human hepatoma cell line Huh-7.5. RNA replication was dependent on mouse cyclophilin and phosphatidylinositol-4 kinase III alpha (PI4KIIIα) and was also observed after transfection of full-length viral RNA. Additionally, ectopic expression of either human or mouse apolipoprotein E (ApoE) was sufficient to permit release of infectious particles. Finally, expression of human entry cofactors rendered these cells permissive to HCV infection, thus confirming that all steps of the HCV replication cycle can be reconstituted in mouse liver-derived cells. CONCLUSION: Blunted innate immunity, abundant miR-122, and HCV entry factor expression permits propagation of HCV in mouse liver-derived cell lines.


Asunto(s)
Hepacivirus/fisiología , Replicación Viral , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apolipoproteínas E/metabolismo , Línea Celular Tumoral , Ciclofilinas/metabolismo , Humanos , Inmunidad Innata , Hígado/virología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , ARN Viral/metabolismo , Internalización del Virus
5.
Gut ; 63(7): 1137-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23903236

RESUMEN

OBJECTIVE: Hepatitis C virus (HCV) infection causes severe liver disease and affects more than 160 million individuals worldwide. People undergoing liver organ transplantation face universal re-infection of the graft. Therefore, affordable antiviral strategies targeting the early stages of infection are urgently needed to prevent the recurrence of HCV infection. The aim of the study was to determine the potency of turmeric curcumin as an HCV entry inhibitor. DESIGN: The antiviral activity of curcumin and its derivatives was evaluated using HCV pseudo-particles (HCVpp) and cell-culture-derived HCV (HCVcc) in hepatoma cell lines and primary human hepatocytes. The mechanism of action was dissected using R18-labelled virions and a membrane fluidity assay. RESULTS: Curcumin treatment had no effect on HCV RNA replication or viral assembly/release. However, co-incubation of HCV with curcumin potently inhibited entry of all major HCV genotypes. Similar antiviral activities were also exerted by other curcumin derivatives but not by tetrahydrocurcumin, suggesting the importance of α,ß-unsaturated ketone groups for the antiviral activity. Expression levels of known HCV receptors were unaltered, while pretreating the virus with the compound reduced viral infectivity without viral lysis. Membrane fluidity experiments indicated that curcumin affected the fluidity of the HCV envelope resulting in impairment of viral binding and fusion. Curcumin has also been found to inhibit cell-to-cell transmission and to be effective in combination with other antiviral agents. CONCLUSIONS: Turmeric curcumin inhibits HCV entry independently of the genotype and in primary human hepatocytes by affecting membrane fluidity thereby impairing virus binding and fusion.


Asunto(s)
Antivirales/farmacología , Curcumina/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C/prevención & control , Hepatocitos/virología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Línea Celular , Línea Celular Tumoral , Curcumina/uso terapéutico , Hepacivirus/fisiología , Hepatitis C/virología , Humanos , Ratones , Ensamble de Virus/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
6.
J Virol ; 87(24): 13297-306, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24089562

RESUMEN

Hepatitis C virus (HCV) is highly variable and associated with chronic liver disease. Viral isolates are grouped into seven genotypes (GTs). Accumulating evidence indicates that viral determinants in the core to NS2 proteins modulate the efficiency of virus production. However, the role of the glycoproteins E1 and E2 in this process is currently poorly defined. Therefore, we constructed chimeric viral genomes to explore the role of E1 and E2 in HCV assembly. Comparison of the kinetics and efficiency of particle production by intragenotypic chimeras highlighted core and p7 as crucial determinants for efficient virion release. Glycoprotein sequences, however, had only a minimal impact on this process. In contrast, in the context of intergenotypic HCV chimeras, HCV assembly was profoundly influenced by glycoprotein genes. On the one hand, insertion of GT1a-derived (H77) E1-E2 sequences into a chimeric GT2a virus (Jc1) strongly suppressed virus production. On the other hand, replacement of H77 glycoproteins within the GT1a-GT2a chimeric genome H77/C3 by GT2a-derived (Jc1) E1-E2 increased infectious particle production. Thus, within intergenotypic chimeras, glycoprotein features strongly modulate virus production. Replacement of Jc1 glycoprotein genes by H77-derived E1-E2 did not grossly affect subcellular localization of core, E2, and NS2. However, it caused an accumulation of nonenveloped core protein and increased abundance of nonenveloped core protein structures with slow sedimentation. These findings reveal an important role for the HCV glycoproteins E1 and E2 in membrane envelopment, which likely depends on a genotype-specific interplay with additional viral factors.


Asunto(s)
Quimera/fisiología , Hepacivirus/fisiología , Hepatitis C/virología , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Quimera/clasificación , Quimera/genética , Genotipo , Hepacivirus/clasificación , Hepacivirus/genética , Humanos , Proteínas del Envoltorio Viral/genética , Ensamble de Virus
7.
PLoS Pathog ; 8(7): e1002829, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911431

RESUMEN

Hepatitis C virus (HCV) has infected around 160 million individuals. Current therapies have limited efficacy and are fraught with side effects. To identify cellular HCV dependency factors, possible therapeutic targets, we manipulated signaling cascades with pathway-specific inhibitors. Using this approach we identified the MAPK/ERK regulated, cytosolic, calcium-dependent, group IVA phospholipase A2 (PLA2G4A) as a novel HCV dependency factor. Inhibition of PLA2G4A activity reduced core protein abundance at lipid droplets, core envelopment and secretion of particles. Moreover, released particles displayed aberrant protein composition and were 100-fold less infectious. Exogenous addition of arachidonic acid, the cleavage product of PLA2G4A-catalyzed lipolysis, but not other related poly-unsaturated fatty acids restored infectivity. Strikingly, production of infectious Dengue virus, a relative of HCV, was also dependent on PLA2G4A. These results highlight previously unrecognized parallels in the assembly pathways of these human pathogens, and define PLA2G4A-dependent lipolysis as crucial prerequisite for production of highly infectious viral progeny.


Asunto(s)
Ácido Araquidónico/farmacología , Fosfolipasas A2 Grupo IV/metabolismo , Hepacivirus/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Butadienos/farmacología , Línea Celular , Virus del Dengue/crecimiento & desarrollo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Fosfolipasas A2 Grupo IV/genética , Hepacivirus/crecimiento & desarrollo , Humanos , Macrófagos , Nitrilos/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Vesiculovirus/crecimiento & desarrollo , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
8.
PLoS Pathog ; 7(4): e1002029, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21552323

RESUMEN

Hepatitis C virus (HCV) is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.


Asunto(s)
Hepacivirus/fisiología , Replicación Viral/genética , Animales , Fusión Celular , Línea Celular , Células HEK293 , Células HeLa , Humanos , Interferón-alfa/farmacología , Ratones , Modelos Animales , Transfección
9.
J Vis Exp ; (65): e4029, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22825033

RESUMEN

Hepatitis C virus (HCV) is a hepatotropic virus with a host-range restricted to humans and chimpanzees. Although HCV RNA replication has been observed in human non-hepatic and murine cell lines, the efficiency was very low and required long-term selection procedures using HCV replicon constructs expressing dominant antibiotic-selectable markers. HCV in vitro research is therefore limited to human hepatoma cell lines permissive for virus entry and completion of the viral life cycle. Due to HCVs narrow species tropism, there is no immunocompetent small animal model available that sustains the complete HCV replication cycle. Inefficient replication of HCV in non-human cells e.g. of mouse origin is likely due to lack of genetic incompatibility of essential host dependency factors and/or expression of restriction factors. We investigated whether HCV propagation is suppressed by dominant restriction factors in either human cell lines derived from non-hepatic tissues or in mouse liver cell lines. To this end, we developed two independent conditional trans-complementation methods relying on somatic cell fusion. In both cases, completion of the viral replication cycle is only possible in the heterokaryons. Consequently, successful trans-complementation, which is determined by measuring de novo production of infectious viral progeny, indicates absence of dominant restrictions. Specifically, subgenomic HCV replicons carrying a luciferase transgene were transfected into highly permissive human hepatoma cells (Huh-7.5 cells). Subsequently, these cells were co-cultured and fused to various human and murine cells expressing HCV structural proteins core, envelope 1 and 2 (E1, E2) and accessory proteins p7 and NS2. Provided that cell fusion was initiated by treatment with polyethylene-glycol (PEG), the culture released infectious viral particles which infected naïve cells in a receptor-dependent fashion. To assess the influence of dominant restrictions on the complete viral life cycle including cell entry, RNA translation, replication and virus assembly, we took advantage of a human liver cell line (Huh-7 Lunet N cells) which lacks endogenous expression of CD81, an essential entry factor of HCV. In the absence of ectopically expressed CD81, these cells are essentially refractory to HCV infection. Importantly, when co-cultured and fused with cells that express human CD81 but lack at least another crucial cell entry factor (i.e. SR-BI, CLDN1, OCLN), only the resulting heterokaryons display the complete set of HCV entry factors requisite for infection. Therefore, to analyze if dominant restriction factors suppress completion of the HCV replication cycle, we fused Lunet N cells with various cells from human and mouse origin which fulfill the above mentioned criteria. When co-cultured cells were transfected with a highly fusogenic viral envelope protein mutant of the prototype foamy virus (PFV) and subsequently challenged with infectious HCV particles (HCVcc), de novo production of infectious virus was observed. This indicates that HCV successfully completed its replication cycle in heterokaryons thus ruling out expression of dominant restriction factors in these cell lines. These novel conditional trans-complementation methods will be useful to screen a large panel of cell lines and primary cells for expression of HCV-specific dominant restriction factors.


Asunto(s)
Hepacivirus/fisiología , Replicación Viral/fisiología , Animales , Células HeLa , Humanos , Ratones , Transfección
10.
PLoS One ; 7(4): e36029, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558311

RESUMEN

BACKGROUND: Hepatitis C virus (HCV) patients with high serum levels of bile acids (BAs) respond poorly to IFN therapy. BAs have been shown to increase RNA-replication of genotype 1 but not genotype 2a replicons. Since BAs modulate lipid metabolism including lipoprotein secretion and as HCV depends on lipids and lipoproteins during RNA-replication, virus production and cell entry, BAs may affect multiple steps of the HCV life cycle. Therefore, we analyzed the influence of BAs on individual steps of virus replication. METHODS: We measured replication of subgenomic genotype (GT) 1b and 2a RNAs as well as full-length GT2a genomes in the presence of BAs using quantitative RT-PCR and luciferase assays. Cell entry was determined using HCV pseudoparticles (HCVpp). Virus assembly and release were quantified using a core-specific ELISA. Replicon chimeras were employed to characterize genotype-specific modulation of HCV by BAs. Lunet CD81/GFP-NLS-MAVS cells were used to determine infection of Con1 particles. RESULTS: BAs increased RNA-replication of GT1b replicons up to 10-fold but had no effect on subgenomic GT2a replicons both in Huh-7 and HuH6 cells. They did not increase viral RNA translation, virus assembly and release or cell entry. Lowering replication efficiency of GT2a replicons rendered them susceptible to stimulation by BAs. Moreover, replication of full length GT1b with or without replication enhancing mutations and GT2a genomes were also stimulated by BAs. CONCLUSIONS: Bile acids specifically enhance RNA-replication. This is not limited to GT1, but also holds true for GT2a full length genomes and subgenomic replicons with low replication capacity. The increase of HCV replication by BAs may influence the efficacy of antiviral treatment in vivo and may improve replication of primary HCV genomes in cell culture.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , ARN Viral/genética , Replicación Viral/efectos de los fármacos , Células Cultivadas , Ácido Quenodesoxicólico/farmacología , Genes Reporteros/genética , Genoma Viral/genética , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Hepacivirus/genética , Hepacivirus/patogenicidad , Humanos , Mutación/genética , Virión/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/genética
11.
EMBO Mol Med ; 1(4): 211-22, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20049723

RESUMEN

Dendritic cells (DCs) protect the respiratory epithelium via induction of innate immune responses and priming of naïve T cells during the initiation of adaptive immunity. Streptococcus pneumoniae, a commonly carried asymptomatic member of the human nasopharyngeal microflora, can cause invasive and inflammatory diseases and the cholesterol-dependent cytotoxin pneumolysin is a major pneumococcal virulence factor implicated in compounding tissue damage and mediating inflammatory responses. While most studies examining the impact of pneumolysin have been based on murine models, we have focused this study on human DC responses. We show that expression of haemolytic pneumolysin inhibits human DC maturation, induction of proinflammatory cytokines and activation of the inflammasome. Furthermore, intracellular production of pneumolysin induces caspase-dependent apoptosis in infected DCs. Similarly, clinical isolates with non-haemolytic pneumolysin were more proinflammatory and caused less apoptosis compared to clonally related strains with active pneumolysin. This study describes a novel role of pneumolysin in the evasion of human DC surveillance that could have a profound clinical impact upon inflammatory disease progression and highlights the need to study human responses to human-specific pathogens.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/microbiología , Regulación Bacteriana de la Expresión Génica , Infecciones Neumocócicas/genética , Streptococcus pneumoniae/patogenicidad , Estreptolisinas/genética , Animales , Apoptosis , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caspasas/inmunología , Células Cultivadas , Citocinas/inmunología , Células Dendríticas/citología , Humanos , Ratones , Mutación , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/metabolismo , Serotipificación , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/genética , Estreptolisinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA