Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 153(2): 514-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363856

RESUMEN

A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein- and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose- and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.


Asunto(s)
Anticuerpos Monoclonales/química , Pared Celular/química , Plantas/química , Polisacáridos/análisis , Análisis por Conglomerados , Ensayo de Inmunoadsorción Enzimática , Epítopos/análisis
2.
Plant J ; 56(1): 101-15, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18557833

RESUMEN

The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan alpha-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Glucanos/biosíntesis , Pentosiltransferasa/metabolismo , Xilanos/biosíntesis , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Pared Celular/química , Cromatografía Líquida de Alta Presión , ADN Bacteriano/genética , Genes de Plantas , Prueba de Complementación Genética , Espectrometría de Masas , Mutagénesis Insercional , Mutación , Pentosiltransferasa/genética , Fenotipo , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Int Rev Cytol ; 220: 225-56, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12224550

RESUMEN

Vascular tissues, xylem and phloem, form a continuous network throughout the plant body for transport of water, minerals, and food. Characterization of Arabidopsis mutants defective in various aspects of vascular formation has demonstrated that Arabidopsis is an ideal system for investigating the molecular mechanisms controlling vascular development. The processes affected in these mutants include initiation or division of procambium or vascular cambium, formation of continuous vascular cell files, differentiation of procambium or vascular cambium into vascular tissues, cell elongation, patterned secondary wall thickening, and biosynthesis of secondary walls. Identification of the genes affected by some of these mutations has revealed essential roles in vascular development for a cytokinin receptor and several factors mediating auxin transport or signaling. Mutational studies have also identified a number of Arabidopsis mutants defective in leaf venation pattern or vascular tissue organization in stems. Genetic evidence suggests that the vascular tissue organization is regulated by the same positional information that determines organ polarity.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Tallos de la Planta/crecimiento & desarrollo , Estructuras de las Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Tipificación del Cuerpo/genética , Citocininas/genética , Citocininas/metabolismo , Ácidos Indolacéticos/genética , Ácidos Indolacéticos/metabolismo , Mutación/genética , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Estructuras de las Plantas/genética , Estructuras de las Plantas/metabolismo
4.
Mycologia ; 97(2): 304-11, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16396337

RESUMEN

Penicillium janczewskii, a filamentous fungus isolated from the rhizosphere of Vernonia herbacea (Asteraceae), grows rapidly on media containing either sucrose or inulin as carbon sources. Maintenance of P. janczewskii on inulin medium induces secretion of proteins with high inulinase activity but results in a mycelium that easily collapses and breaks. We evaluated the influence of inulin on fungal growth and colony morphology and on cell-wall structure and composition in comparison with growth and wall characteristics on sucrose-containing medium. P. janczewskii grown on Czapek medium with agar containing 1% (w/v) sucrose or inulin showed differences in the color and morphology of the colonies, although growth rates were similar on both carbon sources. Scanning-electron microscopy revealed that the hyphae from fungus grown on inulin-containing medium are much thinner than those from fungus cultivated on sucrose. Ultrastructural analysis of 5 d old cultures using transmission-electron microscopy indicated significant differences in the cell-wall thickness between hyphae grown on inulin or sucrose media. No differences were detected in the overall carbohydrate and protein contents of cell walls isolated from cultures grown on the two carbon sources. Glycosyl composition analyses showed glucose and galactose as the predominant neutral monosaccharides in the walls but showed no differences attributable to the carbon source. Glycosyl linkage composition analyses indicated a predominance of 3-linked glucopyranosyl in the hyphal walls when P. janczewskii was grown on inulin-containing medium. Our results suggest that growth on inulin as the sole carbon source results in structural changes in the mycelia of P. janczewskii that lead to mycelial walls with altered physical and biological properties.


Asunto(s)
Pared Celular/química , Pared Celular/ultraestructura , Inulina/metabolismo , Penicillium/química , Carbohidratos/análisis , Proteínas Fúngicas/análisis , Hifa/ultraestructura , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Penicillium/crecimiento & desarrollo , Penicillium/ultraestructura , Sacarosa/metabolismo
5.
Plant Cell ; 20(6): 1519-37, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18544630

RESUMEN

Xyloglucans are the main hemicellulosic polysaccharides found in the primary cell walls of dicots and nongraminaceous monocots, where they are thought to interact with cellulose to form a three-dimensional network that functions as the principal load-bearing structure of the primary cell wall. To determine whether two Arabidopsis thaliana genes that encode xylosyltransferases, XXT1 and XXT2, are involved in xyloglucan biosynthesis in vivo and to determine how the plant cell wall is affected by the lack of expression of XXT1, XXT2, or both, we isolated and characterized xxt1 and xxt2 single and xxt1 xxt2 double T-DNA insertion mutants. Although the xxt1 and xxt2 mutants did not have a gross morphological phenotype, they did have a slight decrease in xyloglucan content and showed slightly altered distribution patterns for xyloglucan epitopes. More interestingly, the xxt1 xxt2 double mutant had aberrant root hairs and lacked detectable xyloglucan. The reduction of xyloglucan in the xxt2 mutant and the lack of detectable xyloglucan in the xxt1 xxt2 double mutant resulted in significant changes in the mechanical properties of these plants. We conclude that XXT1 and XXT2 encode xylosyltransferases that are required for xyloglucan biosynthesis. Moreover, the lack of detectable xyloglucan in the xxt1 xxt2 double mutant challenges conventional models of the plant primary cell wall.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glucanos/metabolismo , Pentosiltransferasa/metabolismo , Xilanos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Pared Celular/química , ADN Bacteriano/genética , Glucanos/fisiología , Inmunohistoquímica , Espectrometría de Masas , Microscopía Fluorescente , Modelos Genéticos , Estructura Molecular , Mutagénesis Insercional , Pentosiltransferasa/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/genética , Plantones/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
6.
J Biol Chem ; 282(23): 17101-13, 2007 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-17420254

RESUMEN

Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units. This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The core oligosaccharide region of bacteroid LPS and from anthocyanin-grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra- and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-l-lysine, polymyxin-B, and melittin.


Asunto(s)
Lipopolisacáridos/química , Rhizobium etli/química , Western Blotting , Conformación de Carbohidratos , Secuencia de Carbohidratos , Electroforesis en Gel de Poliacrilamida , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Ácidos Mirísticos/química , Phaseolus/crecimiento & desarrollo , Phaseolus/microbiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Plant Cell ; 19(1): 237-55, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17237350

RESUMEN

The secondary cell wall in higher plants consists mainly of cellulose, lignin, and xylan and is the major component of biomass in many species. The Arabidopsis thaliana irregular xylem8 (irx8) mutant is dwarfed and has a significant reduction in secondary cell wall thickness. IRX8 belongs to a subgroup of glycosyltransferase family 8 called the GAUT1-related gene family, whose members include GAUT1, a homogalacturonan galacturonosyltransferase, and GAUT12 (IRX8). Here, we use comparative cell wall analyses to show that the irx8 mutant contains significantly reduced levels of xylan and homogalacturonan. Immunohistochemical analyses confirmed that the level of xylan was significantly reduced in the mutant. Structural fingerprinting of the cell wall polymers further revealed that irx8 is deficient in glucuronoxylan. To explore the biological function of IRX8, we crossed irx8 with irx1 (affecting cellulose synthase 8). The homozygous irx1 irx8 exhibited severely dwarfed phenotypes, suggesting that IRX8 is essential for cell wall integrity during cellulose deficiency. Taken together, the data presented show that IRX8 affects the level of glucuronoxylan and homogalacturonan in higher plants and that IRX8 provides an important link between the xylan polymer and the secondary cell wall matrix and directly affects secondary cell wall integrity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glicosiltransferasas/genética , Pectinas/metabolismo , Xilanos/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Fraccionamiento Celular , Pared Celular/química , Pared Celular/ultraestructura , Cruzamientos Genéticos , Glucosiltransferasas/genética , Glucosiltransferasas/fisiología , Glicosiltransferasas/fisiología , Inmunohistoquímica , Mutación , Fenotipo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xilema/anatomía & histología , Xilema/genética , Xilema/metabolismo
8.
Plant Physiol ; 145(1): 192-203, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17631529

RESUMEN

In addition to establishing symbiotic relationships with arbuscular mycorrhizal fungi, legumes also enter into a nitrogen-fixing symbiosis with rhizobial bacteria that results in the formation of root nodules. Several genes involved in the development of both arbuscular mycorrhiza and legume nodulation have been cloned in model legumes. Among them, Medicago truncatula DMI1 (DOESN'T MAKE INFECTIONS1) is required for the generation of nucleus-associated calcium spikes in response to the rhizobial signaling molecule Nod factor. DMI1 encodes a membrane protein with striking similarities to the Methanobacterium thermoautotrophicum potassium channel (MthK). The cytosolic C terminus of DMI1 contains a RCK (regulator of the conductance of K(+)) domain that in MthK acts as a calcium-regulated gating ring controlling the activity of the channel. Here we show that a dmi1 mutant lacking the entire C terminus acts as a dominant-negative allele interfering with the formation of nitrogen-fixing nodules and abolishing the induction of calcium spikes by the G-protein agonist Mastoparan. Using both the full-length DMI1 and this dominant-negative mutant protein we show that DMI1 increases the sensitivity of a sodium- and lithium-hypersensitive yeast (Saccharomyces cerevisiae) mutant toward those ions and that the C-terminal domain plays a central role in regulating this response. We also show that DMI1 greatly reduces the release of calcium from internal stores in yeast, while the dominant-negative allele appears to have the opposite effect. This work suggests that DMI1 is not directly responsible for Nod factor-induced calcium changes, but does have the capacity to regulate calcium channels in both yeast and plants.


Asunto(s)
Señalización del Calcio/fisiología , Medicago truncatula/fisiología , Proteínas de Plantas/fisiología , Raíces de Plantas/fisiología , Simbiosis/fisiología , Alelos , Calcio/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Hexosas/fisiología , Litio/metabolismo , Medicago truncatula/genética , Medicago truncatula/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sodio/metabolismo
9.
Plant Physiol ; 132(2): 786-95, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12805608

RESUMEN

Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Celulosa/biosíntesis , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Pared Celular/enzimología , Pared Celular/ultraestructura , Clonación Molecular , Cartilla de ADN , ADN Complementario/genética , Metanosulfonato de Etilo/farmacología , Regulación Enzimológica de la Expresión Génica , Genes Dominantes , Mutagénesis , Subunidades de Proteína
10.
Plant Physiol ; 132(2): 883-92, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12805618

RESUMEN

l-Fucose (l-Fuc) is a monosaccharide constituent of plant cell wall polysaccharides and glycoproteins. The committing step in the de novo synthesis of l-Fuc is catalyzed by GDP-d-mannose 4,6-dehydratase, which, in Arabidopsis, is encoded by the GMD1 and GMD2 (MUR1) genes. To determine the functional significance of this genetic redundancy, the expression patterns of both genes were investigated via promoter-beta-glucuronidase fusions and immunolocalization of a Fuc-containing epitope. GMD2 is expressed in most cell types of the root, with the notable exception of the root tip where strong expression of GMD1 is observed. Within shoot organs, GMD1::GUS expression is confined to stipules and pollen grains leading to fucosylation of the walls of these cell types in the mur1 mutant. These results suggest that GMD2 represents the major housekeeping gene for the de novo synthesis of GDP-l-Fuc, whereas GMD1 expression is limited to a number of specialized cell types. We conclude that the synthesis of GDP-l-Fuc is controlled in a cell-autonomous manner by differential expression of two isoforms of the same enzyme.


Asunto(s)
Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Hidroliasas/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Escherichia coli/enzimología , Escherichia coli/genética , Flores/enzimología , Regulación Enzimológica de la Expresión Génica , Glucuronidasa/genética , Hidroliasas/química , Isoenzimas/química , Isoenzimas/genética , Datos de Secuencia Molecular , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Tallos de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Plant Physiol ; 131(4): 1602-12, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12692319

RESUMEN

The monoclonal antibody, CCRC-M1, which recognizes a fucose (Fuc)-containing epitope found principally in the cell wall polysaccharide xyloglucan, was used to determine the distribution of this epitope throughout the mur1 mutant of Arabidopsis. Immunofluorescent labeling of whole seedlings revealed that mur1 root hairs are stained heavily by CCRC-M1, whereas the body of the root remains unstained or only lightly stained. Immunogold labeling showed that CCRC-M1 labeling within the mur1 root is specific to particular cell walls and cell types. CCRC-M1 labels all cell walls at the apex of primary roots 2 d and older and the apices of mature lateral roots, but does not bind to cell walls in lateral root initials. Labeling with CCRC-M1 decreases in mur1 root cells that are undergoing rapid elongation growth such that, in the mature portions of primary and lateral roots, only the walls of pericycle cells and the outer walls of epidermal cells are labeled. Growth of the mutant on Fuc-containing media restores wild-type labeling, where all cell walls are labeled by the CCRC-M1 antibody. No labeling was observed in mur1 hypocotyls, shoots, or leaves; stipules are labeled. CCRC-M1 does label pollen grains within anthers and pollen tube walls. These results suggest the Fuc destined for incorporation into xyloglucan is synthesized using one or the other or both isoforms of GDP-D-mannose 4,6-dehydratase, depending on the cell type and/or developmental state of the cell.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/genética , Pared Celular/química , Fucosa/análisis , Glucanos , Mutación , Polisacáridos/análisis , Xilanos , Arabidopsis/citología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estructuras de las Plantas/química , Estructuras de las Plantas/citología , Estructuras de las Plantas/metabolismo , Plantones/química , Plantones/citología , Plantones/genética
12.
Braz. j. microbiol ; 33(2): 127-130, Apr.-Jun. 2002. ilus
Artículo en Inglés | LILACS | ID: lil-330256

RESUMEN

Penicillium janczewskii Zaleski is an efficient microorganism for the production of extracellular inulinases and grows rapidly on medium containing sucrose or inulin as carbon source. Maintenance of this filamentous fungus on inulin medium induces secretion of large amounts of inulinases, but the resulting mycelium has thinner cell walls that easily collapse and break. Woronin bodies in hyphae of P. janczewskii grown on sucrose and inulin substrates were observed. No significant differences in the number, location, size and shape of Woronin bodies and level of plugging were observed in cultures of the fungus grown on the two carbon sources. The data indicate that the presence of Woronin bodies in P. janczewskii could not be associated with more easily damaged hyphae, although the function of these organelles in pore plugging has been confirmed.


Asunto(s)
Hongos , Técnicas In Vitro , Inulina , Penicillium , Sacarosa , Medios de Cultivo , Métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA