Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227786

RESUMEN

BACKGROUND: Factors influencing susceptibility to SARS-CoV-2 remain to be resolved. Using data of the Swiss HIV Cohort Study (SHCS) on 6,270 people with HIV (PWH) and serologic assessment for SARS-CoV-2 and circulating-human-coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS: We analyzed SARS-CoV-2 PCR-tests, COVID-19 related hospitalizations, and deaths reported to the SHCS between January 1, 2020 and December 31, 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in pre-pandemic (2019) and pandemic (2020) bio-banked plasma and compared to HIV-negative individuals. We applied logistic regression, conditional logistic regression, and Bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and Ab responses to SARS-CoV-2 in PWH. RESULTS: No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High pre-pandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses upon infection. We observed a robust protective effect of smoking on SARS-CoV-2-infection risk (aOR= 0.46 [0.38,0.56], p=2.6*10-14), which occurred even in previous smokers, and was highest for heavy smokers. CONCLUSIONS: Our findings of two independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2.

2.
Hepatology ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38079352

RESUMEN

BACKGROUND AND AIMS: The clinical spectrum of human infection by HEV ranges from asymptomatic to severe acute hepatitis. Furthermore, HEV can cause diverse neurological manifestations, especially Parsonage-Turner syndrome. Here, we used a large-scale human genomic approach to search for genetic determinants of severe clinical presentations of HEV infection. APPROACH AND RESULTS: We performed whole genome sequencing in 3 groups of study participants with PCR-proven acute HEV infection: (1) 24 patients with symptomatic acute hepatitis E; (2) 12 patients with HEV-associated Parsonage-Turner syndrome; and (3) 16 asymptomatic blood donors (controls). For variant calling and annotation, we used GATK4 best practices followed by Variant Effect Predictor (VEP) and Annovar. For variant classification, we implemented the American College of Medical Genetics and Genomics/Association for Molecular Pathology Bayesian classification framework in R. Variants with a probability of pathogenicity >0.9 were considered damaging. We used all genes with at least 1 damaging variant as input for pathway enrichment analyses.We observed a significant enrichment of type I interferon response pathways in the symptomatic hepatitis group: 10 out of 24 patients carried a damaging variant in one of 9 genes encoding either intracellular viral sensors ( IFIH1 , DDX58 , TLR3 , POLR3B , POLR3C ) or other molecules involved in type I interferon response [interferon regulatory factor 7 ( IRF7 ), MYD88 , OAS3 , GAPDH ]. We did not find any enriched pathway in the Parsonage-Turner syndrome group or in the controls. CONCLUSIONS: Our results highlight the essential role of type I interferon in preventing symptomatic acute hepatitis E.

3.
Vox Sang ; 119(4): 377-382, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38226545

RESUMEN

BACKGROUND AND OBJECTIVES: Mixed-field agglutination in ABO phenotyping (A3, B3) has been linked to genetically different blood cell populations such as in chimerism, or to rare variants in either ABO exon 7 or regulatory regions. Clarification of such cases is challenging and would greatly benefit from sequencing technologies that allow resolving full-gene haplotypes at high resolution. MATERIALS AND METHODS: We used long-read sequencing by Oxford Nanopore Technologies to sequence the entire ABO gene, amplified in two overlapping long-range PCR fragments, in a blood donor presented with A3B phenotype. Confirmation analyses were carried out by Sanger sequencing and included samples from other family members. RESULTS: Our data revealed a novel heterozygous g.10924C>A variant on the ABO*A allele located in the transcription factor binding site for RUNX1 in intron 1 (+5.8 kb site). Inheritance was shown by the results of the donor's mother, who shared the novel variant and the anti-A specific mixed-field agglutination. CONCLUSION: We discovered a regulatory variant in the 8-bp RUNX1 motif of ABO, which extends current knowledge of three other variants affecting the same motif and also leading to A3 or B3 phenotypes. Overall, long-range PCR combined with nanopore sequencing proved powerful and showed great potential as an emerging strategy for resolving cases with cryptic ABO phenotypes.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Humanos , Intrones/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Fenotipo , Alelos , Sitios de Unión , Sistema del Grupo Sanguíneo ABO/genética , Genotipo
4.
Environ Microbiol ; 25(12): 3116-3138, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37688461

RESUMEN

Glacier retreat is a visible consequence of climate change worldwide. Although taxonomic change of the soil microbiomes in glacier forefields have been widely documented, how microbial genetic potential changes along succession is little known. Here, we used shotgun metagenomics to analyse whether the soil microbial genetic potential differed between four stages of soil development (SSD) sampled along three transects in the Damma glacier forefield (Switzerland). The SSDs were characterized by an increasing vegetation cover, from barren soil, to biological soil crust, to sparsely vegetated soil and finally to vegetated soil. Results suggested that SSD significantly influenced microbial genetic potential, with the lowest functional diversity surprisingly occurring in the vegetated soils. Overall, carbohydrate metabolism and secondary metabolite biosynthesis genes overrepresented in vegetated soils, which could be partly attributed to plant-soil feedbacks. For C degradation, glycoside hydrolase genes enriched in vegetated soils, while auxiliary activity and carbohydrate esterases genes overrepresented in barren soils, suggested high labile C degradation potential in vegetated, and high recalcitrant C degradation potential in barren soils. For N-cycling, organic N degradation and synthesis genes dominated along succession, and gene families involved in nitrification were overrepresented in barren soils. Our study provides new insights into how the microbial genetic potential changes during soil formation along the Damma glacier forefield.


Asunto(s)
Cubierta de Hielo , Suelo , Microbiología del Suelo , Plantas , Nitrificación
5.
Acta Neuropathol ; 146(2): 173-190, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37368072

RESUMEN

Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/terapia , Cromatografía Liquida , Espectrometría de Masas en Tándem , Inmunoterapia , Linfocitos T , Neoplasias Meníngeas/terapia
6.
Blood ; 135(18): 1548-1559, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32181816

RESUMEN

Clonal hematopoiesis (CH) is associated with age and an increased risk of myeloid malignancies, cardiovascular risk, and all-cause mortality. We tested for CH in a setting where hematopoietic stem cells (HSCs) of the same individual are exposed to different degrees of proliferative stress and environments, ie, in long-term survivors of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and their respective related donors (n = 42 donor-recipient pairs). With a median follow-up time since allo-HSCT of 16 years (range, 10-32 years), we found a total of 35 mutations in 23 out of 84 (27.4%) study participants. Ten out of 42 donors (23.8%) and 13 out of 42 recipients (31%) had CH. CH was associated with older donor and recipient age. We identified 5 cases of donor-engrafted CH, with 1 case progressing into myelodysplastic syndrome in both donor and recipient. Four out of 5 cases showed increased clone size in recipients compared with donors. We further characterized the hematopoietic system in individuals with CH as follows: (1) CH was consistently present in myeloid cells but varied in penetrance in B and T cells; (2) colony-forming units (CFUs) revealed clonal evolution or multiple independent clones in individuals with multiple CH mutations; and (3) telomere shortening determined in granulocytes suggested ∼20 years of added proliferative history of HSCs in recipients compared with their donors, with telomere length in CH vs non-CH CFUs showing varying patterns. This study provides insight into the long-term behavior of the same human HSCs and respective CH development under different proliferative conditions.


Asunto(s)
Hematopoyesis Clonal , Trasplante de Células Madre Hematopoyéticas/mortalidad , Células Madre Hematopoyéticas/metabolismo , Donantes de Tejidos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Evolución Clonal/genética , Ensayo de Unidades Formadoras de Colonias , Análisis Mutacional de ADN , Femenino , Células Madre Hematopoyéticas/citología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Telómero , Receptores de Trasplantes , Trasplante Homólogo , Resultado del Tratamiento , Adulto Joven
7.
Glob Chang Biol ; 28(12): 3929-3943, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35263490

RESUMEN

The impacts of climate change on ecosystem structure and functioning are likely to be strongest at high latitudes due to the adaptation of biota to relatively low temperatures and nutrient levels. Soil warming is widely predicted to alter microbial, invertebrate, and plant communities, with cascading effects on ecosystem functioning, but this has largely been demonstrated over short-term (<10 year) warming studies. Using a natural soil temperature gradient spanning 10-35°C, we examine responses of soil organisms, decomposition, nitrogen cycling, and plant biomass production to long-term warming. We find that decomposer organisms are surprisingly resistant to chronic warming, with no responses of bacteria, fungi, or their grazers to temperature (fungivorous nematodes being an exception). Soil organic matter content instead drives spatial variation in microorganism abundances and mineral N availability. The few temperature effects that appear are more focused: root biomass and abundance of root-feeding nematodes decrease, and nitrification increases with increasing soil temperature. Our results suggest that transient responses of decomposers and soil functioning to warming may stabilize over time following acclimation and/or adaptation, highlighting the need for long-term, ecosystem-scale studies that incorporate evolutionary responses to soil warming.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Plantas , Suelo/química , Microbiología del Suelo , Temperatura
8.
Glob Chang Biol ; 28(9): 3145-3160, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35124879

RESUMEN

Summer droughts strongly affect soil organic carbon (SOC) cycling, but net effects on SOC storage are unclear as drought affects both C inputs and outputs from soils. Here, we explored the overlooked role of soil fauna on SOC storage in forests, hypothesizing that soil faunal activity is particularly drought-sensitive, thereby reducing litter incorporation into the mineral soil and, eventually, long-term SOC storage. In a drought-prone pine forest (Switzerland), we performed a large-scale irrigation experiment for 17 years and assessed its impact on vertical SOC distribution and composition. We also examined litter mass loss of dominant tree species using different mesh-size litterbags and determined soil fauna abundance and community composition. The 17-year-long irrigation resulted in a C loss in the organic layers (-1.0 kg C m-2 ) and a comparable C gain in the mineral soil (+0.8 kg C m-2 ) and thus did not affect total SOC stocks. Irrigation increased the mass loss of Quercus pubescens and Viburnum lantana leaf litter, with greater effect sizes when meso- and macrofauna were included (+215%) than when excluded (+44%). The enhanced faunal-mediated litter mass loss was paralleled by a many-fold increase in the abundance of meso- and macrofauna during irrigation. Moreover, Acari and Collembola community composition shifted, with a higher presence of drought-sensitive species in irrigated soils. In comparison, microbial SOC mineralization was less sensitive to soil moisture. Our results suggest that the vertical redistribution of SOC with irrigation was mainly driven by faunal-mediated litter incorporation, together with increased root C inputs. Our study shows that soil fauna is highly sensitive to natural drought, which leads to a reduced C transfer from organic layers to the mineral soil. In the longer term, this potentially affects SOC storage and, therefore, soil fauna plays a key but so far largely overlooked role in shaping SOC responses to drought.


Asunto(s)
Pinus , Suelo , Carbono , Ciclo del Carbono , Bosques
9.
Eur J Nutr ; 61(6): 2967-2977, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35320401

RESUMEN

OBJECTIVES: We developed a natural polyphenol supplement that strongly chelates iron in vitro and assessed its effect on non-heme iron absorption in patients with hereditary hemochromatosis (HH). METHODS: We performed in vitro iron digestion experiments to determine iron precipitation by 12 polyphenol-rich dietary sources, and formulated a polyphenol supplement (PPS) containing black tea powder, cocoa powder and grape juice extract. In a multi-center, single-blind, placebo-controlled cross-over study, we assessed the effect of the PPS on iron absorption from an extrinsically labelled test meal and test drink in patients (n = 14) with HH homozygous for the p.C282Y variant in the HFE gene. We measured fractional iron absorption (FIA) as stable iron isotope incorporation into erythrocytes. RESULTS: Black tea powder, cocoa powder and grape juice extract most effectively precipitated iron in vitro. A PPS mixture of these three extracts precipitated ~ 80% of iron when 2 g was added to a 500 g iron solution containing 20 µg Fe/g. In the iron absorption study, the PPS reduced FIA by ~ 40%: FIA from the meal consumed with the PPS was lower (3.01% (1.60, 5.64)) than with placebo (5.21% (3.92, 6.92)) (p = 0.026)), and FIA from the test drink with the PPS was lower (10.3% (7.29 14.6)) than with placebo (16.9% (12.8 22.2)) (p = 0.002). CONCLUSION: Our results indicate that when taken with meals, this natural PPS can decrease dietary iron absorption, and might thereby reduce body iron accumulation and the frequency of phlebotomy in patients with HH. TRIAL REGISTRY: clinicaltrials.gov (registration date: 9.6.2019, NCT03990181).


Asunto(s)
Hemocromatosis , Adulto , Estudios Cruzados , Hemocromatosis/tratamiento farmacológico , Hemocromatosis/genética , Hemocromatosis/metabolismo , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Hierro , Hierro de la Dieta , Polifenoles/farmacología , Polvos , Método Simple Ciego ,
10.
Transfus Med Hemother ; 49(6): 338-345, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36654973

RESUMEN

Introduction: Screening of hepatitis B surface antigen (HBsAg) and individual-donation nucleic acid amplification testing (ID-NAT) of blood donors have become standard to detect hepatitis B virus (HBV) infection. However, there is still a residual risk of HBV transmission by blood components of donors suffering from occult HBV infection (OBI). Therefore, many countries implemented universal testing of anti-HBV core antigen (anti-HBc) antibodies in order to increase blood safety. In Switzerland, anti-HBc testing is not part of the routine blood donor-screening repertoire. Therefore, we sought to assess prevalence of donors with OBI in a Swiss blood donor collective. Methods: Blood donations were prospectively investigated for the presence of anti-HBc antibodies during two time periods (I: all donors, March 2017; II: first-time donors only, April 2017 until February 2018). Anti-HBc-positive findings were confirmed by an anti-HBc neutralization test. Discarded plasma samples of anti-HBc-confirmed positive donors were ultracentrifuged and subsequently retested by regular HBV-ID-NAT to search for traces of HBV. Results: During time period I, 78 (1.6%) individuals out of 4,923 donors were confirmed anti-HBc-positive. Sixty-nine (88%) anti-HBc-positive samples were available and processed by ultracentrifugation followed by repeat HBV-ID-NAT. Four samples (5.8%) were found positive for HBV DNA. Sixty-five (94.2%) samples remained HBV NAT-negative upon ultracentrifugation. During time period II, 56 (0.9%) donor samples out of 6,509 exhibited anti-HBc-confirmed positive. Fifty-five (98%) samples could be reassessed by HBV-ID-NAT upon ultracentrifugation. Three (5.5%) samples contained HBV DNA and 52 (94.5%) samples remained HBV NAT-negative. Conclusion: Overall, we detected 7 viremic OBI carriers among 11,432 blood donors, which tested negative for HBV by standard HBV-ID-NAT and HBsAg screening. In contrast, OBI carriers showed positive anti-HBc findings which could be confirmed in 83.8% of the cases. Thus, OBI might be missed by the current HBV screening process of Swiss blood donors. We suggest to review current HBV screening algorithm. Extended donor screening by anti-HBc testing may unmask OBI carriers and contribute to blood safety for the recipient of blood products.

11.
Environ Microbiol ; 23(4): 2152-2168, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393203

RESUMEN

Due to climate warming, alpine ecosystems are changing rapidly. Ongoing upward migrations of plants and thus an increase of easily decomposable substrates will strongly affect the soil microbiome. To understand how belowground communities will respond to such changes, we set up an incubation experiment with permafrost and active soil layers from northern (NW) and southern (SE) slopes of a mountain ridge on Muot da Barba Peider in the Swiss Alps and incubated them with or without artificial root exudates (AREs) at two temperatures, 4°C or 15°C. The addition of AREs resulted in elevated respiration across all soil types. Bacterial and fungal alpha diversity decreased significantly, coinciding with strong shifts in microbial community structure in ARE-treated soils. These shifts in bacterial community structure were driven by an increased abundance of fast-growing copiotrophic taxa. Fungal communities were predominantly affected by AREs in SE active layer soils and shifted towards fast-growing opportunistic yeast. In contrast, in the colder NW facing active layer and permafrost soils fungal communities were more influenced by temperature changes. These findings demonstrate the sensitivity of soil microbial communities in high alpine ecosystems to climate change and how shifts in these communities may lead to functional changes impacting biogeochemical processes.


Asunto(s)
Microbiota , Hielos Perennes , Carbono , Exudados y Transudados , Respiración , Suelo , Microbiología del Suelo
12.
Environ Microbiol ; 23(11): 6377-6390, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34347349

RESUMEN

The loss of cellular water (desiccation) and the resulting low cytosolic water activity are major stress factors for life. Numerous prokaryotic and eukaryotic taxa have evolved molecular and physiological adaptions to periods of low water availability or water-limited environments that occur across the terrestrial Earth. The changes within cells during the processes of desiccation and rehydration, from the activation (and inactivation) of biosynthetic pathways to the accumulation of compatible solutes, have been studied in considerable detail. However, relatively little is known on the metabolic status of organisms in the desiccated state; that is, in the sometimes extended periods between the drying and rewetting phases. During these periods, which can extend beyond decades and which we term 'anhydrobiosis', organismal survival could be dependent on a continued supply of energy to maintain the basal metabolic processes necessary for critical functions such as macromolecular repair. Here, we review the state of knowledge relating to the function of microorganisms during the anhydrobiotic state, highlighting substantial gaps in our understanding of qualitative and quantitative aspects of molecular and biochemical processes in desiccated cells.


Asunto(s)
Desecación , Eucariontes , Adaptación Fisiológica , Eucariontes/metabolismo , Agua/metabolismo
13.
New Phytol ; 229(5): 2901-2916, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33107606

RESUMEN

Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.


Asunto(s)
Micobioma , Micorrizas , Biodiversidad , Ecosistema , Hongos , Suelo , Microbiología del Suelo
14.
Mol Ecol ; 30(17): 4305-4320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160856

RESUMEN

Despite the importance of soil microorganisms for ecosystem services, long-term surveys of their communities are largely missing. Using metabarcoding, we assessed temporal dynamics of soil bacterial and fungal communities in three land-use types, i.e., arable land, permanent grassland, and forest, over five years. Soil microbial communities remained relatively stable and differences over time were smaller than those among sites. Temporal variability was highest in arable soils. Indications for consistent shifts in community structure over five years were only detected at one site for bacteria and at two sites for fungi, which provided further support for long-term stability of soil microbial communities. A sliding window analysis was applied to assess the effect of OTU abundance on community structures. Partial communities with decreasing OTU abundances revealed a gradually decreasing structural similarity with entire communities. This contrasted with the steep decline of OTU abundances, as subsets of rare OTUs (<0.01%) revealed correlations of up to 0.97 and 0.81 with the entire bacterial and fungal communities. Finally, 23.4% of bacterial and 19.8% of fungal OTUs were identified as scarce, i.e., neither belonging to site-cores nor correlating to environmental factors, while 67.3% of bacterial and 64.9% of fungal OTUs were identified as rare but not scarce. Our results demonstrate high stability of soil microbial communities in their abundant and rare fractions over five years. This provides a step towards defining site-specific normal operating ranges of soil microbial communities, which is a prerequisite for detecting community shifts that may occur due to changing environmental conditions or anthropogenic activities.


Asunto(s)
Microbiota , Micobioma , Bacterias/genética , Hongos/genética , Microbiota/genética , Micobioma/genética , Suelo , Microbiología del Suelo
15.
Glob Chang Biol ; 27(7): 1365-1386, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33336444

RESUMEN

Climate change is strongly affecting high-mountain soils and warming in particular is associated with pronounced changes in microbe-mediated C and N cycling, affecting plant-soil interactions and greenhouse gas balances and therefore feedbacks to global warming. We used shotgun metagenomics to assess changes in microbial community structures, as well as changes in microbial C- and N-cycling potential and stress response genes and we linked these data with changes in soil C and N pools and temperature-dependent measurements of bacterial growth rates. We did so by incubating high-elevation soil from the Swiss Alps at 4°C, 15°C, 25°C, or 35°C for 1 month. We found no shift with increasing temperature in the C-substrate-degrader community towards taxa more capable of degrading recalcitrant organic matter. Conversely, at 35°C, we found an increase in genes associated with the degradation and modification of microbial cell walls, together with high bacterial growth rates. Together, these findings suggest that the rapidly growing high-temperature community is fueled by necromass from heat-sensitive taxa. This interpretation was further supported by a shift in the microbial N-cycling potential towards N mineralization and assimilation under higher temperatures, along with reduced potential for conversions among inorganic N forms. Microbial stress-response genes reacted inconsistently to increasing temperature, suggesting that the high-temperature community was not severely stressed by these conditions. Rather, soil microbes were able to acclimate by changing the thermal properties of membranes and cell walls as indicated by an increase in genes involved in membrane and cell wall modifications as well as a shift in the optimum temperature for bacterial growth towards the treatment temperature. Overall, our results suggest that high temperatures, as they may occur with heat waves under global warming, promote a highly active microbial community capable of rapid mineralization of microbial necromass, which may transiently amplify warming effects.


Asunto(s)
Microbiología del Suelo , Suelo , Genética Microbiana , Calor , Temperatura
16.
Ecol Appl ; 31(3): e02271, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33615604

RESUMEN

It is generally assumed that restoring biodiversity will enhance diversity and ecosystem functioning. However, to date, it has rarely been evaluated whether and how restoration efforts manage to rebuild biodiversity and multiple ecosystem functions (ecosystem multifunctionality) simultaneously. Here, we quantified how three restoration methods of increasing intervention intensity (harvest only < topsoil removal < topsoil removal + propagule addition) affected grassland ecosystem multifunctionality 22 yr after the restoration event. We compared restored with intensively managed and targeted seminatural grasslands based on 13 biotic and abiotic, above- and belowground properties. We found that all three restoration methods improved ecosystem multifunctionality compared to intensively managed grasslands and developed toward the targeted seminatural grasslands. However, whereas higher levels of intervention intensity reached ecosystem multifunctionality of targeted seminatural grasslands after 22 yr, lower intervention missed this target. Moreover, we found that topsoil removal with and without seed addition accelerated the recovery of biotic and aboveground properties, and we found no negative long-term effects on abiotic or belowground properties despite removing the top layer of the soil. We also evaluated which ecosystem properties were the best indicators for restoration success in terms of accuracy and cost efficiency. Overall, we demonstrated that low-cost measures explained relatively more variation of ecosystem multifunctionality compared to high-cost measures. Plant species richness was the most accurate individual property in describing ecosystem multifunctionality, as it accounted for 54% of ecosystem multifunctionality at only 4% of the costs of our comprehensive multifunctionality approach. Plant species richness is the property that typically is used in restoration monitoring by conservation agencies. Vegetation structure, soil carbon storage and water-holding capacity together explained 70% of ecosystem multifunctionality at only twice the costs (8%) of plant species richness, which is, in our opinion, worth considering in future restoration monitoring projects. Hence, our findings provide a guideline for land managers how they could obtain an accurate estimate of aboveground-belowground ecosystem multifunctionality and restoration success in a highly cost-efficient way.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Plantas , Suelo
17.
Int J Syst Evol Microbiol ; 70(4): 2334-2338, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32022657

RESUMEN

A cryophilic basidiomycetous yeast unable to grow at 18 °C or higher temperatures was isolated from a subsurface permafrost layer collected in the Eastern Swiss Alps and from melted sea ice collected in the Artic at Frobisher Bay, Nunavut, Canada. Phylogenetic analyses employing combined sequences of the D1/D2 domain and ITS region indicated that the two new isolates belong to the family Camptobasidiaceae of the class Microbotryomycetes but are distantly related to any of the currently recognized species and genera. Consequently, the novel genus Cryolevonia, and the novel species Cryolevonia schafbergensis (type strain PYCC 8347T=CBS 16055T) are proposed to accommodate this cryophilic yeast. Although sparse hyphae and teliospore-like stuctures were observed upon prolonged incubation, a sexual cycle was not observed and therefore C. schafbergensis is documented solely from its asexual stage.


Asunto(s)
Basidiomycota/clasificación , Cubierta de Hielo/microbiología , Hielos Perennes/microbiología , Filogenia , Basidiomycota/aislamiento & purificación , Canadá , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Análisis de Secuencia de ADN , Suiza
18.
Transfus Med Hemother ; 47(2): 119-128, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32355471

RESUMEN

BACKGROUND: Roughly one quarter of short-term temporary deferrals (STTD) of blood donors are low-hemoglobin deferrals (LHD), i.e. STTD due to a hemoglobin (Hb) value falling below a cutoff of 125 g/L for female and 135 g/L for male donors. Since voluntarily donating blood is a prosocial activity, donors may perceive deferral as social exclusion, which can cause social pain, decrease self-esteem, and lead to antisocial behavior. However, little is known about the causal impacts of LHD on donor return. STUDY DESIGN AND METHODS: We conducted a quasi-experiment with 80,060 donors invited to blood drives in the canton of Zurich, Switzerland, between 2009 and 2014. Within a narrow window of Hb values around the predetermined cutoff, the rate of LHD jumps discontinuously. This discontinuous jump allows us to quantify the causal effects of LHD on donor return, as it is uncorrelated with other unobserved factors that may also affect donor return. RESULTS: We found different behavioral reactions to LHD for female and male donors. Female donors do not react to the first LHD. However, after any repeated LHD, they are 13.53 percentage points (p <0.001) less likely to make at least 1 donation attempt within the next 18 months and make 0.389 fewer donation attempts (p <0.001). Male donors react to the first LHD. They are 5.32 percentage points (p = 0.139) less likely to make at least 1 donation attempt over the next 18 months and make 0.227 (p = 0.018) fewer donation attempts. After any repeated LHD, male donors are 13.30 percentage points (p = 0.004) less likely to make at least 1 donation attempt and make 0.152 (p = 0.308) fewer donation attempts. CONCLUSION: LHD have detrimental impacts on donor return, especially if they occur repeatedly - suggesting that avoiding false LHD and helping donors to better cope with them helps to maintain the pool of prospective donors.

19.
Transfus Med Hemother ; 47(4): 326-336, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32884505

RESUMEN

The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24- and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+var alleles, known to cause strongly reduced GPB expression. The 110- and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo- and hemizygous transmission.

20.
Transfusion ; 58(7): 1752-1762, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29656499

RESUMEN

BACKGROUND: Blood group phenotype variation has been attributed to potential resistance to pathogen invasion. Variation was mapped in blood donors from Lampang (northern region) and Saraburi (central region), Thailand, where malaria is endemic. The previously unknown blood group allele profiles were characterized and the data were correlated with phenotypes. The high incidence of the Vel-negative phenotype previously reported in Thais was investigated. STUDY DESIGN AND METHODS: DNA from 396 blood donors was analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. Outliers were investigated by serology and DNA sequencing. Allele discrimination assays for SMIM1 rs1175550A/G and ACKR1 rs118062001C/T were performed and correlated with antigen expression. RESULTS: All samples were phenotyped for Rh, MNS, and K. Genotyping/phenotyping for RhD, K, and S/s showed 100% concordance. Investigation of three RHCE outliers revealed an e-variant antigen encoded by RHCE*02.22. Screening for rs147357308 (RHCE c.667T) revealed a frequency of 3.3%. MN typing discrepancies in 41 samples revealed glycophorin variants, of which 40 of 41 were due to Mia . Nine samples (2.3%) were heterozygous for FY*01W.01 (c.265C > T), and six samples (1.5%) were heterozygous for JK*02N.01. All samples were wildtype SMIM1 homozygotes with 97% homozygosity for rs1175550A. CONCLUSIONS: Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry is an efficient method for rapid routine genotyping and investigation of outliers identified novel variation among our samples. The expected high prevalence of the Mi(a+) phenotype was observed from both regions. Of potential clinical relevance in a region where transfusion-dependent thalassemia is common, we identified two RHCE*02 alleles known to encode an e-variant antigen.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sistema del Grupo Sanguíneo ABO/genética , Antígenos de Grupos Sanguíneos/genética , Citometría de Flujo , Frecuencia de los Genes/genética , Genotipo , Haplotipos/genética , Humanos , Fenotipo , Polimorfismo Genético/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema del Grupo Sanguíneo Rh-Hr/genética , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA