Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 91(9): e0006623, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37594276

RESUMEN

The genus Prototheca is an extremely unusual group of achlorophyllic, obligately heterotrophic algae. Six species have been identified as pathogens of vertebrates, including cattle and humans. In cattle, P. bovis is the main infectious pathogen and is associated with bovine mastitis. In contrast, human infections typically involve P. wickerhamii and are associated with a spectrum of varying clinical presentations. Prototheca spp. enter the host from the environment and are therefore likely to be initially recognized by cells of the innate immune system. However, little is known about the nature of the interaction between Prototheca spp. and host phagocytes. In the present study, we adopt a live-cell imaging approach to investigate these interactions over time. Using environmental and clinical strains, we show that P. bovis cells are readily internalized and processed by macrophages, whereas these immune cells struggle to internalize P. wickerhamii. Serum opsonization of P. wickerhamii only marginally improves phagocytosis, suggesting that this species (but not P. bovis) may have evolved mechanisms to evade phagocytosis. Furthermore, we show that inhibition of the kinases Syk or PI3K, which are both critical for innate immune signaling, drastically reduces the uptake of P. bovis. Finally, we show that genetic ablation of MyD88, a signaling adaptor critical for Toll-like receptor signaling, has little impact on uptake but significantly prolongs phagosome maturation once P. bovis is internalized. Together, our data suggest that these two pathogenic Prototheca spp. have very different host-pathogen interactions which have potential therapeutic implications for the treatment of human and animal disease.


Asunto(s)
Prototheca , Humanos , Femenino , Animales , Bovinos , Prototheca/genética , Fagocitosis , Macrófagos , Fagocitos , Transducción de Señal
2.
EMBO J ; 38(13): e100926, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268602

RESUMEN

The guanylate binding protein (GBP) family of interferon-inducible GTPases promotes antimicrobial immunity and cell death. During bacterial infection, multiple mouse Gbps, human GBP2, and GBP5 support the activation of caspase-1-containing inflammasome complexes or caspase-4 which trigger pyroptosis. Whether GBPs regulate other forms of cell death is not known. The apicomplexan parasite Toxoplasma gondii causes macrophage death through unidentified mechanisms. Here we report that Toxoplasma-induced death of human macrophages requires GBP1 and its ability to target Toxoplasma parasitophorous vacuoles through its GTPase activity and prenylation. Mechanistically, GBP1 promoted Toxoplasma detection by AIM2, which induced GSDMD-independent, ASC-, and caspase-8-dependent apoptosis. Identical molecular determinants targeted GBP1 to Salmonella-containing vacuoles. GBP1 facilitated caspase-4 recruitment to Salmonella leading to its enhanced activation and pyroptosis. Notably, GBP1 could be bypassed by the delivery of Toxoplasma DNA or bacterial LPS into the cytosol, pointing to its role in liberating microbial molecules. GBP1 thus acts as a gatekeeper of cell death pathways, which respond specifically to infecting microbes. Our findings expand the immune roles of human GBPs in regulating not only pyroptosis, but also apoptosis.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Macrófagos/parasitología , Toxoplasma/patogenicidad , Toxoplasmosis/metabolismo , Caspasas Iniciadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Macrófagos/metabolismo , Prenilación de Proteína , Piroptosis , Células THP-1 , Toxoplasmosis/parasitología
3.
Cell Microbiol ; 23(7): e13349, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930228

RESUMEN

To study the dynamics of infection processes, it is common to manually enumerate imaging-based infection assays. However, manual counting of events from imaging data is biased, error-prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state-of-the-art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host-pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans.


Asunto(s)
Infecciones por Chlamydia/diagnóstico por imagen , Criptococosis/diagnóstico por imagen , Interacciones Huésped-Patógeno , Procesamiento de Imagen Asistido por Computador/métodos , Toxoplasmosis/diagnóstico por imagen , Inteligencia Artificial , Línea Celular Tumoral , Humanos
4.
Nature ; 579(7797): 34-35, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32123364
5.
FASEB J ; 33(11): 12500-12514, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31408613

RESUMEN

The tetraspanin CD82 is a potent suppressor of tumor metastasis and regulates several processes including signal transduction, cell adhesion, motility, and aggregation. However, the mechanisms by which CD82 participates in innate immunity are unknown. We report that CD82 is a key regulator of TLR9 trafficking and signaling. TLR9 recognizes unmethylated cytosine-phosphate-guanine (CpG) motifs present in viral, bacterial, and fungal DNA. We demonstrate that TLR9 and CD82 associate in macrophages, which occurs in the endoplasmic reticulum (ER) and post-ER. Moreover, CD82 is essential for TLR9-dependent myddosome formation in response to CpG stimulation. Finally, CD82 modulates TLR9-dependent NF-κB nuclear translocation, which is critical for inflammatory cytokine production. To our knowledge, this is the first time a tetraspanin has been implicated as a key regulator of TLR signaling. Collectively, our study demonstrates that CD82 is a specific regulator of TLR9 signaling, which may be critical in cancer immunotherapy approaches and coordinating the innate immune response to pathogens.-Khan, N. S., Lukason, D. P., Feliu, M., Ward, R. A., Lord, A. K., Reedy, J. L., Ramirez-Ortiz, Z. G., Tam, J. M., Kasperkovitz, P. V., Negoro, P. E., Vyas, T. D., Xu, S., Brinkmann, M. M., Acharaya, M., Artavanis-Tsakonas, K., Frickel, E.-M., Becker, C. E., Dagher, Z., Kim, Y.-M., Latz, E., Ploegh, H. L., Mansour, M. K., Miranti, C. K., Levitz, S. M., Vyas, J. M. CD82 controls CpG-dependent TLR9 signaling.


Asunto(s)
Núcleo Celular/inmunología , Proteína Kangai-1/inmunología , Macrófagos/inmunología , Oligodesoxirribonucleótidos/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 9/inmunología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Animales , Núcleo Celular/genética , Citocinas/genética , Citocinas/inmunología , Retículo Endoplásmico/genética , Retículo Endoplásmico/inmunología , Retículo Endoplásmico/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Proteína Kangai-1/genética , Macrófagos/patología , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/inmunología , Células RAW 264.7 , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor Toll-Like 9/genética
6.
J Immunol ; 201(2): 604-614, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29891555

RESUMEN

IFN-stimulated gene (ISG) 15 is a ubiquitin-like protein induced after type I IFN stimulation. There is a dearth of in vivo models to study free unconjugated ISG15 function. We found that free ISG15 enhances the production of IFN-γ and IL-1ß during murine infection with Toxoplasma gondii In our model, ISG15 is induced in a type I IFN-dependent fashion and released into the serum. Increased ISG15 levels are dependent on an actively invading and replicating parasite. Two cysteine residues in the hinge domain are necessary determinants for ISG15 to induce increased cytokine levels during infection. Increased ISG15 is concurrent with an influx of IL-1ß-producing CD8α+ dendritic cells to the site of infection. In this article, we present Toxoplasma infection as a novel in vivo murine model to study the immunomodulatory properties of free ISG15 and uniquely link it to IL-1ß production by CD8α+ dendritic cells driven by two cysteines in the hinge region of the protein.


Asunto(s)
Citocinas/metabolismo , Células Dendríticas/inmunología , Interleucina-1beta/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/inmunología , Animales , Antígenos CD8/metabolismo , Movimiento Celular , Células Cultivadas , Cisteína/genética , Citocinas/genética , Modelos Animales de Enfermedad , Inmunomodulación , Interferón Tipo I/inmunología , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación Proteica , Ubiquitinas/genética , Ubiquitinas/metabolismo
7.
PLoS Pathog ; 12(11): e1006027, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27875583

RESUMEN

Toxoplasma gondii is the most common protozoan parasitic infection in man. Gamma interferon (IFNγ) activates haematopoietic and non-haematopoietic cells to kill the parasite and mediate host resistance. IFNγ-driven host resistance pathways and parasitic virulence factors are well described in mice, but a detailed understanding of pathways that kill Toxoplasma in human cells is lacking. Here we show, that contrary to the widely held belief that the Toxoplasma vacuole is non-fusogenic, in an immune-stimulated environment, the vacuole of type II Toxoplasma in human cells is able to fuse with the host endo-lysosomal machinery leading to parasite death by acidification. Similar to murine cells, we find that type II, but not type I Toxoplasma vacuoles are targeted by K63-linked ubiquitin in an IFNγ-dependent manner in non-haematopoetic primary-like human endothelial cells. Host defence proteins p62 and NDP52 are subsequently recruited to the type II vacuole in distinct, overlapping microdomains with a loss of IFNγ-dependent restriction in p62 knocked down cells. Autophagy proteins Atg16L1, GABARAP and LC3B are recruited to <10% of parasite vacuoles and show no parasite strain preference, which is consistent with inhibition and enhancement of autophagy showing no effect on parasite replication. We demonstrate that this differs from HeLa human epithelial cells, where type II Toxoplasma are restricted by non-canonical autophagy leading to growth stunting that is independent of lysosomal acidification. In contrast to mouse cells, human vacuoles do not break. In HUVEC, the ubiquitinated vacuoles are targeted for destruction in acidified LAMP1-positive endo-lysosomal compartments. Consequently, parasite death can be prevented by inhibiting host ubiquitination and endosomal acidification. Thus, K63-linked ubiquitin recognition leading to vacuolar endo-lysosomal fusion and acidification is an important, novel virulence-driven Toxoplasma human host defence pathway.


Asunto(s)
Interacciones Huésped-Parásitos/inmunología , Interferón gamma/inmunología , Lisosomas/inmunología , Toxoplasmosis/inmunología , Ubiquitinación/inmunología , Citometría de Flujo , Humanos , Immunoblotting , Lisina/metabolismo , Lisosomas/metabolismo , Lisosomas/parasitología , Microscopía Fluorescente , Toxoplasma/inmunología , Toxoplasma/metabolismo , Toxoplasmosis/metabolismo , Vacuolas/inmunología , Vacuolas/metabolismo , Vacuolas/parasitología
8.
Proc Natl Acad Sci U S A ; 112(41): E5628-37, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417105

RESUMEN

Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.


Asunto(s)
Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Proteínas de Unión al GTP/inmunología , Evasión Inmune , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Ubiquitina/inmunología , Vacuolas/inmunología , Animales , Proteínas de Unión al GTP/genética , Inmunidad Innata , Ratones , Ratones Noqueados , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/inmunología , Toxoplasmosis/genética , Toxoplasmosis/patología , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Vacuolas/metabolismo , Vacuolas/microbiología
9.
Proc Natl Acad Sci U S A ; 112(33): E4581-90, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240314

RESUMEN

IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ-inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ-inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIß, impaired IFN-γ-dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ-induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2-Irga6 axis of IFN-γ-dependent cell-autonomous immunity.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Regulación Enzimológica de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Interferón gamma/inmunología , Toxoplasma/patogenicidad , Toxoplasmosis/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chlorocebus aethiops , Cartilla de ADN/genética , Femenino , Fibroblastos/metabolismo , Inflamación/inmunología , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Células Vero
10.
Cell Microbiol ; 18(8): 1056-64, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26874079

RESUMEN

Guanylate binding proteins (GBPs) are a family of large interferon-inducible GTPases that are transcriptionally upregulated upon infection with intracellular pathogens. Murine GBPs (mGBPs) including mGBP1 and 2 localize to and disrupt pathogen-containing vacuoles (PVs) resulting in the cell-autonomous clearing or innate immune detection of PV-resident pathogens. Human GBPs (hGBPs) are known to exert antiviral host defense and activate the NLRP3 inflammasome, but it is unclear whether hGBPs can directly recognize and control intravacuolar pathogens. Here, we report that endogenous or ectopically expressed hGBP1 fails to associate with PVs formed in human cells by the bacterial pathogens Chlamydia trachomatis or Salmonella typhimurium or the protozoan pathogen Toxoplasma gondii. While we find that hGBP1 expression has no discernible effect on intracellular replication of C. trachomatis and S. typhimurium, we observed enhanced early Toxoplasma replication in CRISPR hGBP1-deleted human epithelial cells. We thus identified a novel role for hGBP1 in cell-autonomous immunity that is independent of PV translocation, as observed for mGBPs. This study highlights fundamental differences between human and murine GBPs and underlines the need to study the functions of GBPs at cellular locations away from PVs.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Toxoplasma/fisiología , Vacuolas/metabolismo , Células A549 , Chlamydia trachomatis/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/parasitología , Humanos , Transporte de Proteínas , Salmonella typhimurium/fisiología , Vacuolas/parasitología
11.
Immunology ; 149(3): 270-279, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27377596

RESUMEN

We generated a CD8 T-cell receptor (TCR) transnuclear (TN) mouse specific to the Ld -restricted immunodominant epitope of GRA6 from Toxoplasma gondii as a source of cells to facilitate further investigation into the CD8 T-cell-mediated response against this pathogen. The TN T cells bound Ld -Gra6 tetramer and proliferated upon unspecific and peptide-specific stimulation. The TCR beta sequence of the Gra6-specific TN CD8 T cells is identical in its V- and J-region to the TCR-ß harboured by a hybridoma line generated in response to Gra6 peptide. Adoptively transferred Gra6 TN CD8 T cells proliferated upon Toxoplasma infection in vivo and exhibited an activated phenotype similar to host CD8 T cells specific to Gra6. The brain of Toxoplasma-infected mice carried Gra6 TN cells already at day 8 post-infection. Both Gra6 TN mice as well as adoptively transferred Gra6 TN cells were able to significantly reduce the parasite burden in the acute phase of Toxoplasma infection. Overall, the Gra6 TN mouse represents a functional tool to study the protective and immunodominant specific CD8 T-cell response to Toxoplasma in both the acute and the chronic phases of infection.


Asunto(s)
Antígenos de Protozoos/metabolismo , Linfocitos T CD8-positivos/fisiología , Epítopos Inmunodominantes/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/inmunología , Enfermedad Aguda , Traslado Adoptivo , Animales , Antígenos de Protozoos/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Antígenos de Histocompatibilidad Clase I/metabolismo , Hibridomas , Epítopos Inmunodominantes/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Proteínas Protozoarias/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Especificidad del Receptor de Antígeno de Linfocitos T
12.
13.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38709216

RESUMEN

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Asunto(s)
Autofagia , Núcleo Celular , Proteína Sequestosoma-1 , Virus Vaccinia , Humanos , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Núcleo Celular/virología , Células HEK293 , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Fosforilación , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Vaccinia/metabolismo , Vaccinia/virología , Vaccinia/genética , Virus Vaccinia/metabolismo , Virus Vaccinia/genética , Replicación Viral
14.
Infect Immun ; 81(12): 4341-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24042117

RESUMEN

The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate immunity in nonhematopoietic cells has been extensively studied in mice, it remains unclear what resistance mechanisms are relied on in nonhematopoietic human cells. Here, we report an IFN-γ-induced mechanism of resistance to Toxoplasma in primary human foreskin fibroblasts (HFFs) that does not depend on the deprivation of tryptophan or iron. In addition, infection is still controlled in HFFs deficient in the p65 guanylate binding proteins GBP1 or GBP2 and the autophagic protein ATG5. Resistance is coincident with host cell death that is not dependent on the necroptosis mediator RIPK3 or caspases and is correlated with early egress of the parasite before replication. This IFN-γ-induced cell death and early egress limits replication in HFFs and could promote clearance of the parasite by immune cells.


Asunto(s)
Apoptosis/inmunología , Interferón gamma/metabolismo , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Proteína 5 Relacionada con la Autofagia , Células Cultivadas , Fibroblastos , Proteínas de Unión al GTP/deficiencia , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/inmunología , Humanos , Hierro , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/inmunología , Interferencia de ARN , ARN Interferente Pequeño , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Triptófano
15.
Curr Opin Immunol ; 84: 102373, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37536111

RESUMEN

Cell-intrinsic defense is an essential part of the immune response against intracellular pathogens regulated by cytokine-induced proteins and pathways. One of the most upregulated families of proteins in this defense system are the guanylate-binding proteins (GBPs), large GTPases of the dynamin family, induced in response to interferon gamma. Human GBPs (hGBPs) exert their antimicrobial activity through detection of pathogen-associated molecular patterns and/or damage-associated molecular patterns to execute control mechanisms directed at the pathogen itself as well as the vacuolar compartments in which it resides. Consequently, hGBPs are also inducers of canonical and noncanonical inflammasome responses leading to host cell death. The mechanisms are both cell-type and pathogen-dependent with hGBP1 acting as a pioneer sensor for intracellular invaders. This review focuses on the most recent functional roles of hGBPs in pathways of pathogen detection, destruction, and host cell death induction.

16.
mSphere ; 8(6): e0051123, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37975677

RESUMEN

IMPORTANCE: Toxoplasma gondii (Tg) is a ubiquitous parasitic pathogen, infecting about one-third of the global population. Tg is controlled in immunocompetent people by mechanisms that are not fully understood. Tg infection drives the production of the inflammatory cytokine interferon gamma (IFNγ), which upregulates intracellular anti-pathogen defense pathways. In this study, we describe host proteins p97/VCP, UBXD1, and ANKRD13A that control Tg at the parasitophorous vacuole (PV) in IFNγ-stimulated endothelial cells. p97/VCP is an ATPase that interacts with a network of cofactors and is active in a wide range of ubiquitin-dependent cellular processes. We demonstrate that PV ubiquitination is a pre-requisite for recruitment of these host defense proteins, and their deposition directs Tg PVs to acidification in endothelial cells. We show that p97/VCP universally targets PVs in human cells and restricts Tg in different human cell types. Overall, these findings reveal new players of intracellular host defense of a vacuolated pathogen.


Asunto(s)
Parásitos , Toxoplasma , Animales , Humanos , Toxoplasma/metabolismo , Interferones/metabolismo , Vacuolas/metabolismo , Células Endoteliales , Interferón gamma , Proteína que Contiene Valosina/metabolismo
17.
Nat Commun ; 14(1): 4895, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580395

RESUMEN

The opportunistic fungal pathogen Cryptococcus neoformans causes lethal infections in immunocompromised patients. Macrophages are central to the host response to cryptococci; however, it is unclear how C. neoformans is recognised and phagocytosed by macrophages. Here we investigate the role of TLR4 in the non-opsonic phagocytosis of C. neoformans. We find that loss of TLR4 function unexpectedly increases phagocytosis of non-opsonised cryptococci by murine and human macrophages. The increased phagocytosis observed in Tlr4-/- cells was dampened by pre-treatment of macrophages with oxidised-LDL, a known ligand of scavenger receptors. The scavenger receptor, macrophage scavenger receptor 1 (MSR1) (also known as SR-A1 or CD204) was upregulated in Tlr4-/- macrophages. Genetic ablation of MSR1 resulted in a 75% decrease in phagocytosis of non-opsonised cryptococci, strongly suggesting that it is a key non-opsonic receptor for this pathogen. We go on to show that MSR1-mediated uptake likely involves the formation of a multimolecular signalling complex involving FcγR leading to SYK, PI3K, p38 and ERK1/2 activation to drive actin remodelling and phagocytosis. Altogether, our data indicate a hitherto unidentified role for TLR4/MSR1 crosstalk in the non-opsonic phagocytosis of C. neoformans.


Asunto(s)
Criptococosis , Fagocitosis , Receptores Depuradores de Clase A , Receptor Toll-Like 4 , Animales , Humanos , Ratones , Cryptococcus neoformans , Macrófagos/microbiología , Receptor Toll-Like 4/genética , Receptores Depuradores de Clase A/metabolismo
18.
Science ; 382(6666): eadg2253, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797010

RESUMEN

Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.


Asunto(s)
Proteínas de Unión al GTP , Interacciones Huésped-Patógeno , Inmunidad Innata , Interferón gamma , Proteínas Proto-Oncogénicas c-pim-1 , Toxoplasma , Toxoplasmosis , Humanos , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Interferón gamma/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Toxoplasmosis/inmunología , Factores de Virulencia/metabolismo , Macrófagos/inmunología , Proteínas 14-3-3/metabolismo , Interacciones Huésped-Patógeno/inmunología
19.
Stem Cell Reports ; 18(5): 1090-1106, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37163979

RESUMEN

Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/genética , Síndrome de Wolfram/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Mutación
20.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086404

RESUMEN

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Autofagia , Niacinamida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA