Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 137(3): 1305-13, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25562406

RESUMEN

Highly active catalysts for the oxygen evolution reaction (OER) are required for the development of photoelectrochemical devices that generate hydrogen efficiently from water using solar energy. Here, we identify the origin of a 500-fold OER activity enhancement that can be achieved with mixed (Ni,Fe)oxyhydroxides (Ni(1-x)Fe(x)OOH) over their pure Ni and Fe parent compounds, resulting in one of the most active currently known OER catalysts in alkaline electrolyte. Operando X-ray absorption spectroscopy (XAS) using high energy resolution fluorescence detection (HERFD) reveals that Fe(3+) in Ni(1-x)Fe(x)OOH occupies octahedral sites with unusually short Fe-O bond distances, induced by edge-sharing with surrounding [NiO6] octahedra. Using computational methods, we establish that this structural motif results in near optimal adsorption energies of OER intermediates and low overpotentials at Fe sites. By contrast, Ni sites in Ni(1-x)Fe(x)OOH are not active sites for the oxidation of water.

2.
Angew Chem Int Ed Engl ; 53(28): 7169-72, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24889896

RESUMEN

An iridium oxide nanoparticle electrocatalyst under oxygen evolution reaction conditions was probed in situ by ambient-pressure X-ray photoelectron spectroscopy. Under OER conditions, iridium undergoes a change in oxidation state from Ir(IV) to Ir(V) that takes place predominantly at the surface of the catalyst. The chemical change in iridium is coupled to a decrease in surface hydroxide, providing experimental evidence which strongly suggests that the oxygen evolution reaction on iridium oxide occurs through an OOH-mediated deprotonation mechanism.

3.
J Phys Chem Lett ; 15(5): 1521-1528, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38299494

RESUMEN

Stabilization of ions in exotic oxidation states is beneficial for the development of new materials for green energy technologies. Exotic Mn1+ was proposed to play a role in the function of sodium-based Prussian blue analogues (PBA) batteries, a highly sought-out technology for industrial energy storage. Here, we report the detailed electronic structure characterization of uncharged and charged sodium-based manganese hexacyanomanganate anodes via Mn K-edge X-ray absorption spectroscopy (XAS), Kß nonresonant X-ray emission (XES), and resonant inelastic X-ray scattering (RIXS). The latter allowed us to obtain site-selective XANES information about two distinct Mn centers. The obtained spectroscopic data represent the first electronic structure characterization of low-spin Mn1+ using hard X-ray RIXS and XES and allowed us to confirm its role in anode reduction. Our experimental approach can be expanded to analysis of analogues with other 3d transition metals broadening the application of exotic ionic states in materials engineering.

4.
Phys Chem Chem Phys ; 15(40): 17460-7, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24026021

RESUMEN

Resonant inelastic X-ray scattering and high-resolution X-ray absorption spectroscopy were used to identify the chemical state of a Co electrocatalyst in situ during the oxygen evolution reaction. After anodic electrodeposition onto Au(111) from a Co(2+)-containing electrolyte, the chemical environment of Co can be identified to be almost identical to CoOOH. With increasing potentials, a subtle increase of the Co oxidation state is observed, indicating a non-stoichiometric composition of the working OER catalyst containing a small fraction of Co(4+) sites. In order to confirm this interpretation, we used density functional theory with a Hubbard-U correction approach to compute X-ray absorption spectra of model compounds, which agree well with the experimental spectra. In situ monitoring of catalyst local structure and bonding is essential in the development of structure-activity relationships that can guide the discovery of efficient and earth abundant water splitting catalysts.

5.
J Am Chem Soc ; 134(23): 9664-71, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22616917

RESUMEN

We have studied the effect of nanostructuring in Pt monolayer model electrocatalysts on a Rh(111) single-crystal substrate on the adsorption strength of chemisorbed species. In situ high energy resolution fluorescence detection X-ray absorption spectroscopy at the Pt L(3) edge reveals characteristic changes of the shape and intensity of the "white-line" due to chemisorption of atomic hydrogen (H(ad)) at low potentials and oxygen-containing species (O/OH(ad)) at high potentials. On a uniform, two-dimensional Pt monolayer grown by Pt evaporation in ultrahigh vacuum, we observe a significant destabilization of both H(ad) and O/OH(ad) due to strain and ligand effects induced by the underlying Rh(111) substrate. When Pt is deposited via a wet-chemical route, by contrast, three-dimensional Pt islands are formed. In this case, strain and Rh ligand effects are balanced with higher local thickness of the Pt islands as well as higher defect density, shifting H and OH adsorption energies back toward pure Pt. Using density functional theory, we calculate O adsorption energies and corresponding local ORR activities for fcc 3-fold hollow sites with various local geometries that are present in the three-dimensional Pt islands.

6.
J Am Chem Soc ; 133(14): 5580-6, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21428292

RESUMEN

Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake.

7.
Phys Chem Chem Phys ; 13(1): 262-6, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21063617

RESUMEN

In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.


Asunto(s)
Óxidos/química , Platino (Metal)/química , Electroquímica , Oxígeno/química , Análisis Espectral , Propiedades de Superficie , Rayos X
9.
J Phys Chem B ; 122(2): 878-887, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28980810

RESUMEN

Herein we present surface sensitive operando XAS L-edge measurements on IrOx/RuO2 thin films as well as mass-selected RuOx and Ru nanoparticles. We observed shifts of the white line XAS peak toward higher energies with applied electrochemical potential. Apart from the case of the metallic Ru nanoparticles, the observed potential dependencies were purely core-level shifts caused by a change in oxidation state, which indicates no structural changes. These findings can be explained by different binding energies of oxygenated species on the surface of IrOx and RuOx. Simulated XAS spectra show that the average Ir oxidation state change is strongly affected by the coverage of atomic O. The observed shifts in oxidation state suggest that the surface has a high coverage of O at potentials just below the potential where oxygen evolution is exergonic in free energy. This observation is consistent with the notion that the metal-oxygen bond is stronger than ideal.

10.
J Phys Chem B ; 122(2): 947-955, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29045788

RESUMEN

The high precious metal loading and high overpotential of the oxygen evolution reaction (OER) prevents the widespread utilization of polymer electrolyte membrane (PEM) water electrolyzers. Herein we explore the OER activity and stability in acidic electrolyte of a combined IrOx/RuO2 system consisting of RuO2 thin films with submonolayer (1, 2, and 4 Å) amounts of IrOx deposited on top. Operando extended X-ray absorption fine structure (EXAFS) on the Ir L-3 edge revealed a rutile type IrO2 structure with some Ir sites occupied by Ru, IrOx being at the surface of the RuO2 thin film. We monitor corrosion on IrOx/RuO2 thin films by combining electrochemical quartz crystal microbalance (EQCM) with inductively coupled mass spectrometry (ICP-MS). We elucidate the importance of submonolayer surface IrOx in minimizing Ru dissolution. Our work shows that we can tune the surface properties of active OER catalysts, such as RuO2, aiming to achieve higher electrocatalytic stability in PEM electrolyzers.

11.
J Phys Chem Lett ; 8(1): 285-290, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27983864

RESUMEN

Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.

13.
J Phys Chem Lett ; 7(8): 1466-70, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27045045

RESUMEN

Nanostructured copper cathodes are among the most efficient and selective catalysts to date for making multicarbon products from the electrochemical carbon dioxide reduction reaction (CO2RR). We report an in situ X-ray absorption spectroscopy investigation of the formation of a copper nanocube CO2RR catalyst with high activity that highly favors ethylene over methane production. The results show that the precursor for the copper nanocube formation is copper(I)-oxide, not copper(I)-chloride as previously assumed. A second route to an electrochemically similar material via a copper(II)-carbonate/hydroxide is also reported. This study highlights the importance of using oxidized copper precursors for constructing selective CO2 reduction catalysts and shows the precursor oxidation state does not affect the electrocatalyst selectivity toward ethylene formation.

14.
Nat Chem ; 6(8): 732-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25054945

RESUMEN

Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease the amount of platinum required, for example by alloying, but without detrimentally affecting its properties. The alloy PtxY is known to be active and stable, but its synthesis in nanoparticulate form has proved challenging, which limits its further study. Herein we demonstrate the synthesis, characterization and catalyst testing of model PtxY nanoparticles prepared through the gas-aggregation technique. The catalysts reported here are highly active, with a mass activity of up to 3.05 A mgPt(-1) at 0.9 V versus a reversible hydrogen electrode. Using a variety of characterization techniques, we show that the enhanced activity of PtxY over elemental platinum results exclusively from a compressive strain exerted on the platinum surface atoms by the alloy core.


Asunto(s)
Nanopartículas del Metal/química , Oxígeno/química , Platino (Metal)/química , Aleaciones/química , Catálisis , Electrodos , Gases/química , Oxidación-Reducción , Tamaño de la Partícula
15.
Phys Chem Chem Phys ; 9(17): 2142-5, 2007 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-17464396

RESUMEN

One monolayer of Cu was prepared on Au(111) by underpotential deposition from CuSO4/H2SO4 solution and, by two electrolyte exchanges for (i) Cu-free H2SO4 and (ii) NaOH/Na2S solution, exposed to bisulfide. This procedure leads to several incommensurate phases with characteristic stripe patterns. These are irreversibly displaced upon cathodic potential sweeps by different structures, which, after returning to the initial potential, transform into the rectangular CuxS phase already known for the sulfidation of a Cu submonolayer on Au(111).

16.
Langmuir ; 20(7): 2803-6; discussion 2807-8, 2004 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-15835156

RESUMEN

We have reinvestigated the behavior of a Cu(111) electrode in pure and cinchonidine containing aqueous 0.1 M HClO4 solution by cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (STM). In contrast to previous publications by Wan et al. (Langmuir 2000, 19, 1958-1962 and references cited therein) on Cu(111) in pure 0.1 M HClO4 which claimed an adsorbate-free Cu(111) surface in the entire potential range, we have found a highly ordered hexagonal adsorbate structure with a (4 x 4) unit cell, which is stable in the potential range from hydrogen evolution at -350 to -150 mV (RHE). The adsorbate-free (1 x 1) Cu(111) surface is only visible in a fairly small potential range from -150 to +50 mV. A disordered surface structure is formed at more positive potentials which is interpreted by adsorption of an oxygen-containing species. Furthermore, the formation of a highly ordered cinchonidine adlayer on Cu(111) in 0.1 M HClO4 as reported by Wan et al. (J. Am. Chem. Soc. 2002, 124, 14300-14301) could not be reproduced here. In fact, the similarity of all structures reported by Wan et al. for a great variety of different organic adlayers on Cu(111) in HClO4 solution including cinchonidine with the (4 x 4) superstructure found here already in pure HClO4 solution (i.e., without organic solute) casts serious doubts on the validity of those previous results by Wan et al. in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA