Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Epilepsia ; 65(5): 1462-1474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38436479

RESUMEN

OBJECTIVE: Interictal blood-brain barrier dysfunction in chronic epilepsy has been demonstrated in animal models and pathological specimens. Ictal blood-brain barrier dysfunction has been shown in humans in vivo using an experimental quantitative magnetic resonance imaging (MRI) protocol. Here, we hypothesized that interictal blood-brain barrier dysfunction is also present in people with drug-resistant epilepsy. METHODS: Thirty-nine people (21 females, mean age at MRI ± SD = 30 ± 8 years) with drug-resistant epilepsy were prospectively recruited and underwent interictal T1-relaxometry before and after administration of a paramagnetic contrast agent. Likewise, quantitative T1 was acquired in 29 people without epilepsy (12 females, age at MRI = 48 ± 18 years). Quantitative T1 difference maps were calculated and served as a surrogate imaging marker for blood-brain barrier dysfunction. Values of quantitative T1 difference maps inside hemispheres ipsilateral to the presumed seizure onset zone were then compared, on a voxelwise level and within presumed seizure onset zones, to the contralateral side of people with epilepsy and to people without epilepsy. RESULTS: Compared to the contralateral side, ipsilateral T1 difference values were significantly higher in white matter (corrected p < .05), gray matter (uncorrected p < .05), and presumed seizure onset zones (p = .04) in people with epilepsy. Compared to people without epilepsy, significantly higher T1 difference values were found in the anatomical vicinity of presumed seizure onset zones (p = .004). A subgroup of people with hippocampal sclerosis demonstrated significantly higher T1 difference values in the ipsilateral hippocampus and in regions strongly interconnected with the hippocampus compared to people without epilepsy (corrected p < .01). Finally, z-scores reflecting the deviation of T1 difference values within the presumed seizure onset zone were associated with verbal memory performance (p = .02) in people with temporal lobe epilepsy. SIGNIFICANCE: Our results indicate a blood-brain barrier dysfunction in drug-resistant epilepsy that is detectable interictally in vivo, anatomically related to the presumed seizure onset zone, and associated with cognitive deficits.


Asunto(s)
Barrera Hematoencefálica , Epilepsia Refractaria , Imagen por Resonancia Magnética , Humanos , Barrera Hematoencefálica/fisiopatología , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/diagnóstico por imagen , Femenino , Masculino , Adulto , Persona de Mediana Edad , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico por imagen , Adulto Joven , Estudios Prospectivos , Epilepsia/fisiopatología , Epilepsia/diagnóstico por imagen
2.
Can J Neurol Sci ; : 1-10, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38453685

RESUMEN

BACKGROUND: Contrast-induced encephalopathy (CIE) is an adverse event associated with diagnostic and therapeutic endovascular procedures. Decades of animal and human research support a mechanistic role for pathological blood-brain barrier dysfunction (BBBd). Here, we describe an institutional case series and review the literature supporting a mechanistic role for BBBd in CIE. METHODS: A literature review was conducted by searching MEDLINE, Web of Science, Embase, CINAHL and Cochrane databases from inception to January 31, 2022. We searched our institutional neurovascular database for cases of CIE following endovascular treatment of cerebrovascular disease during a 6-month period. Informed consent was obtained in all cases. RESULTS: Review of the literature revealed risk factors for BBBd and CIE, including microvascular disease, pathological neuroinflammation, severe procedural hypertension, iodinated contrast load and altered cerebral blood flow dynamics. In our institutional series, 6 of 52 (11.5%) of patients undergoing therapeutic neuroendovascular procedures developed CIE during the study period. Four patients were treated for ischemic stroke and two patients for recurrent cerebral aneurysms. Mechanical stenting or thrombectomy were utilized in all cases. CONCLUSION: In this institutional case series and literature review of animal and human data, we identified numerous shared risk factors for CIE and BBBd, including microvascular disease, increased procedure length, large contrast volumes, severe intraoperative hypertension and use of mechanical devices that may induce iatrogenic endothelial injury.

3.
Retina ; 44(4): 689-699, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38011843

RESUMEN

PURPOSE: To our knowledge, we present the first case series investigating the relationship between adaptive optics (AO) imaging and intravenous fluorescein angiography (IVFA) parameters in patients with diabetic retinopathy. METHODS: Consecutive patients with diabetic retinopathy older than age 18 years presenting to a single center in Toronto, Canada, from 2020 to 2021 were recruited. Adaptive optics was performed with the RTX1 camera (Imagine Eyes, Orsay, France) at retinal eccentricities of 2° and 4°. Intravenous fluorescein angiography was assessed with the artificial intelligence-based RETICAD system to extract blood flow, perfusion, and blood-retinal-barrier (BRB) permeability at the same retinal locations. Correlations between AO and IVFA parameters were calculated using Pearson's correlation coefficient. RESULTS: Across nine cases, a significant positive correlation existed between photoreceptor spacing on AO and BRB permeability (r = 0.303, P = 0.027), as well as perfusion (r = 0.272, P = 0.049) on IVFA. When stratified by location, a significant positive correlation between photoreceptor dispersion and both BRB permeability and perfusion (r = 0.770, P = 0.043; r = 0.846, P = 0.034, respectively) was observed. Cone density was also negatively correlated with BRB permeability (r = -0.819, P = 0.046). CONCLUSION: Photoreceptor spacing on AO was significantly correlated with BRB permeability and perfusion on IVFA in patients with diabetic retinopathy. Future studies with larger sample sizes are needed to understand the relationship between AO and IVFA parameters in diverse patient populations.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Adolescente , Angiografía con Fluoresceína , Inteligencia Artificial , Retina , Células Fotorreceptoras Retinianas Conos , Tomografía de Coherencia Óptica/métodos
4.
Clin J Sport Med ; 34(1): 61-68, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37285595

RESUMEN

OBJECTIVE: To investigate the link between dysfunction of the blood-brain barrier (BBB) and exposure to head impacts in concussed football athletes. DESIGN: This was a prospective, observational pilot study. SETTING: Canadian university football. PARTICIPANTS: The study population consisted of 60 university football players, aged 18 to 25. Athletes who sustained a clinically diagnosed concussion over the course of a single football season were invited to undergo an assessment of BBB leakage. INDEPENDENT VARIABLES: Head impacts detected using impact-sensing helmets were the measured variables. MAIN OUTCOME MEASURES: Clinical diagnosis of concussion and BBB leakage assessed using dynamic contrast-enhanced MRI (DCE-MRI) within 1 week of concussion were the outcome measures. RESULTS: Eight athletes were diagnosed with a concussion throughout the season. These athletes sustained a significantly higher number of head impacts than nonconcussed athletes. Athletes playing in the defensive back position were significantly more likely to sustain a concussion than remain concussion free. Five of the concussed athletes underwent an assessment of BBB leakage. Logistic regression analysis indicated that region-specific BBB leakage in these 5 athletes was best predicted by impacts sustained in all games and practices leading up to the concussion-as opposed to the last preconcussion impact or the impacts sustained during the game when concussion occurred. CONCLUSIONS: These preliminary findings raise the potential for the hypothesis that repeated exposure to head impacts may contribute to the development of BBB pathology. Further research is needed to validate this hypothesis and to test whether BBB pathology plays a role in the sequela of repeated head trauma.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Humanos , Barrera Hematoencefálica/lesiones , Conmoción Encefálica/diagnóstico , Canadá , Fútbol Americano/lesiones , Estudios Prospectivos , Universidades
5.
Neurobiol Dis ; 186: 106269, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619791

RESUMEN

Traumatic brain injury (TBI) involves an acute injury (primary damage), which may evolve in the hours to days after impact (secondary damage). Seizures and cortical spreading depolarization (CSD) are metabolically demanding processes that may worsen secondary brain injury. Metabolic stress has been associated with mitochondrial dysfunction, including impaired calcium homeostasis, reduced ATP production, and elevated ROS production. However, the association between mitochondrial impairment and vascular function after TBI is poorly understood. Here, we explored this association using a rodent closed head injury model. CSD is associated with neurobehavioral decline after TBI. Craniotomy was performed to elicit CSD via electrical stimulation or to induce seizures via 4-aminopyridine application. We measured vascular dysfunction following CSDs and seizures in TBI animals using laser doppler flowmetry. We observed a more profound reduction in local cortical blood flow in TBI animals compared to healthy controls. CSD resulted in mitochondrial dysfunction and pathological signs of increased oxidative stress adjacent to the vasculature. We explored these findings further using electron microscopy and found that TBI and CSDs resulted in vascular morphological changes and mitochondrial cristae damage in astrocytes, pericytes and endothelial cells. Overall, we provide evidence that CSDs induce mitochondrial dysfunction, impaired cortical blood flow, and neurobehavioral deficits in the setting of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Acoplamiento Neurovascular , Animales , Células Endoteliales , Lesiones Traumáticas del Encéfalo/complicaciones
6.
Rheumatology (Oxford) ; 62(2): 685-695, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35699463

RESUMEN

OBJECTIVE: Extensive blood-brain barrier (BBB) leakage has been linked to cognitive impairment in SLE. This study aimed to examine the associations of brain functional connectivity (FC) with cognitive impairment and BBB dysfunction among patients with SLE. METHODS: Cognitive function was assessed by neuropsychological testing (n = 77). Resting-state FC (rsFC) between brain regions, measured by functional MRI (n = 78), assessed coordinated neural activation in 131 regions across five canonical brain networks. BBB permeability was measured by dynamic contrast-enhanced MRI (n = 61). Differences in rsFC were compared between SLE patients with cognitive impairment (SLE-CI) and those with normal cognition (SLE-NC), between SLE patients with and without extensive BBB leakage, and with healthy controls. RESULTS: A whole-brain rsFC comparison found significant differences in intra-network and inter-network FC in SLE-CI vs SLE-NC patients. The affected connections showed a reduced negative rsFC in SLE-CI compared with SLE-NC and healthy controls. Similarly, a reduced number of brain-wide connections was found in SLE-CI patients compared with SLE-NC (P = 0.030) and healthy controls (P = 0.006). Specific brain regions had a lower total number of brain-wide connections in association with extensive BBB leakage (P = 0.011). Causal mediation analysis revealed that 64% of the association between BBB leakage and cognitive impairment in SLE patients was mediated by alterations in FC. CONCLUSION: SLE patients with cognitive impairment had abnormalities in brain rsFC which accounted for most of the association between extensive BBB leakage and cognitive impairment.


Asunto(s)
Disfunción Cognitiva , Lupus Eritematoso Sistémico , Humanos , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Cognición/fisiología , Imagen por Resonancia Magnética , Lupus Eritematoso Sistémico/complicaciones
7.
Anesthesiology ; 138(6): 611-623, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36893015

RESUMEN

BACKGROUND: Maintenance of ion homeostasis is essential for normal brain function. Inhalational anesthetics are known to act on various receptors, but their effects on ion homeostatic systems, such as sodium/potassium-adenosine triphosphatase (Na+/K+-ATPase), remain largely unexplored. Based on reports demonstrating global network activity and wakefulness modulation by interstitial ions, the hypothesis was that deep isoflurane anesthesia affects ion homeostasis and the key mechanism for clearing extracellular potassium, Na+/K+-ATPase. METHODS: Using ion-selective microelectrodes, this study assessed isoflurane-induced extracellular ion dynamics in cortical slices of male and female Wistar rats in the absence of synaptic activity, in the presence of two-pore-domain potassium channel antagonists, during seizures, and during spreading depolarizations. The specific isoflurane effects on Na+/K+-ATPase function were measured using a coupled enzyme assay and studied the relevance of the findings in vivo and in silico. RESULTS: Isoflurane concentrations clinically relevant for burst suppression anesthesia increased baseline extracellular potassium (mean ± SD, 3.0 ± 0.0 vs. 3.9 ± 0.5 mM; P < 0.001; n = 39) and lowered extracellular sodium (153.4 ± 0.8 vs. 145.2 ± 6.0 mM; P < 0.001; n = 28). Similar changes in extracellular potassium and extracellular sodium and a substantial drop in extracellular calcium (1.5 ± 0.0 vs. 1.2 ± 0.1 mM; P = 0.001; n = 16) during inhibition of synaptic activity and two-pore-domain potassium suggested a different underlying mechanism. After seizure-like events and spreading depolarization, isoflurane greatly slowed extracellular potassium clearance (63.4 ± 18.2 vs. 196.2 ± 82.4 s; P < 0.001; n = 14). Na+/K+-ATPase activity was markedly reduced after isoflurane exposure (greater than 25%), affecting specifically the α2/3 activity fraction. In vivo, isoflurane-induced burst suppression resulted in impaired extracellular potassium clearance and interstitial potassium accumulation. A computational biophysical model reproduced the observed effects on extracellular potassium and displayed intensified bursting when Na+/K+-ATPase activity was reduced by 35%. Finally, Na+/K+-ATPase inhibition with ouabain induced burst-like activity during light anesthesia in vivo. CONCLUSIONS: The results demonstrate cortical ion homeostasis perturbation and specific Na+/K+-ATPase impairment during deep isoflurane anesthesia. Slowed potassium clearance and extracellular accumulation might modulate cortical excitability during burst suppression generation, while prolonged Na+/K+-ATPase impairment could contribute to neuronal dysfunction after deep anesthesia.


Asunto(s)
Isoflurano , Ratas , Animales , Masculino , Femenino , Isoflurano/farmacología , Ratas Wistar , Homeostasis , Encéfalo , Convulsiones , Potasio/farmacología , Sodio , Adenosina Trifosfatasas
8.
Brain ; 145(6): 2049-2063, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34927674

RESUMEN

The mechanisms underlying the complications of mild traumatic brain injury, including post-concussion syndrome, post-impact catastrophic death, and delayed neurodegeneration remain poorly understood. This limited pathophysiological understanding has hindered the development of diagnostic and prognostic biomarkers and has prevented the advancement of treatments for the sequelae of mild traumatic brain injury. We aimed to characterize the early electrophysiological and neurovascular alterations following repetitive mild traumatic brain injury and sought to identify new targets for the diagnosis and treatment of individuals at risk of severe post-impact complications. We combined behavioural, electrophysiological, molecular, and neuroimaging techniques in a rodent model of repetitive mild traumatic brain injury. In humans, we used dynamic contrast-enhanced MRI to quantify blood-brain barrier dysfunction after exposure to sport-related concussive mild traumatic brain injury. Rats could clearly be classified based on their susceptibility to neurological complications, including life-threatening outcomes, following repetitive injury. Susceptible animals showed greater neurological complications and had higher levels of blood-brain barrier dysfunction, transforming growth factor ß (TGFß) signalling, and neuroinflammation compared to resilient animals. Cortical spreading depolarizations were the most common electrophysiological events immediately following mild traumatic brain injury and were associated with longer recovery from impact. Triggering cortical spreading depolarizations in mild traumatic brain injured rats (but not in controls) induced blood-brain barrier dysfunction. Treatment with a selective TGFß receptor inhibitor prevented blood-brain barrier opening and reduced injury complications. Consistent with the rodent model, blood-brain barrier dysfunction was found in a subset of human athletes following concussive mild traumatic brain injury. We provide evidence that cortical spreading depolarization, blood-brain barrier dysfunction, and pro-inflammatory TGFß signalling are associated with severe, potentially life-threatening outcomes following repetitive mild traumatic brain injury. Diagnostic-coupled targeting of TGFß signalling may be a novel strategy in treating mild traumatic brain injury.


Asunto(s)
Conmoción Encefálica , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Conmoción Encefálica/etiología , Humanos , Neuroimagen , Ratas , Factor de Crecimiento Transformador beta/metabolismo
9.
Brain ; 145(4): 1264-1284, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35411920

RESUMEN

Focal brain damage after aneurysmal subarachnoid haemorrhage predominantly results from intracerebral haemorrhage, and early and delayed cerebral ischaemia. The prospective, observational, multicentre, cohort, diagnostic phase III trial, DISCHARGE-1, primarily investigated whether the peak total spreading depolarization-induced depression duration of a recording day during delayed neuromonitoring (delayed depression duration) indicates delayed ipsilateral infarction. Consecutive patients (n = 205) who required neurosurgery were enrolled in six university hospitals from September 2009 to April 2018. Subdural electrodes for electrocorticography were implanted. Participants were excluded on the basis of exclusion criteria, technical problems in data quality, missing neuroimages or patient withdrawal (n = 25). Evaluators were blinded to other measures. Longitudinal MRI, and CT studies if clinically indicated, revealed that 162/180 patients developed focal brain damage during the first 2 weeks. During 4.5 years of cumulative recording, 6777 spreading depolarizations occurred in 161/180 patients and 238 electrographic seizures in 14/180. Ten patients died early; 90/170 developed delayed infarction ipsilateral to the electrodes. Primary objective was to investigate whether a 60-min delayed depression duration cut-off in a 24-h window predicts delayed infarction with >0.60 sensitivity and >0.80 specificity, and to estimate a new cut-off. The 60-min cut-off was too short. Sensitivity was sufficient [= 0.76 (95% confidence interval: 0.65-0.84), P = 0.0014] but specificity was 0.59 (0.47-0.70), i.e. <0.80 (P < 0.0001). Nevertheless, the area under the receiver operating characteristic (AUROC) curve of delayed depression duration was 0.76 (0.69-0.83, P < 0.0001) for delayed infarction and 0.88 (0.81-0.94, P < 0.0001) for delayed ischaemia (reversible delayed neurological deficit or infarction). In secondary analysis, a new 180-min cut-off indicated delayed infarction with a targeted 0.62 sensitivity and 0.83 specificity. In awake patients, the AUROC curve of delayed depression duration was 0.84 (0.70-0.97, P = 0.001) and the prespecified 60-min cut-off showed 0.71 sensitivity and 0.82 specificity for reversible neurological deficits. In multivariate analysis, delayed depression duration (ß = 0.474, P < 0.001), delayed median Glasgow Coma Score (ß = -0.201, P = 0.005) and peak transcranial Doppler (ß = 0.169, P = 0.016) explained 35% of variance in delayed infarction. Another key finding was that spreading depolarization-variables were included in every multiple regression model of early, delayed and total brain damage, patient outcome and death, strongly suggesting that they are an independent biomarker of progressive brain injury. While the 60-min cut-off of cumulative depression in a 24-h window indicated reversible delayed neurological deficit, only a 180-min cut-off indicated new infarction with >0.60 sensitivity and >0.80 specificity. Although spontaneous resolution of the neurological deficit is still possible, we recommend initiating rescue treatment at the 60-min rather than the 180-min cut-off if progression of injury to infarction is to be prevented.


Asunto(s)
Lesiones Encefálicas , Depresión de Propagación Cortical , Hemorragia Subaracnoidea , Lesiones Encefálicas/complicaciones , Infarto Cerebral/complicaciones , Electrocorticografía , Humanos , Estudios Prospectivos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagen
10.
Epilepsia ; 63(1): 190-198, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34750812

RESUMEN

OBJECTIVE: Management of a patient presenting with a first seizure depends on the risk of additional seizures. In clinical practice, the recurrence risk is estimated by the treating physician using the neurological examination, brain imaging, a thorough history for risk factors, and routine scalp electroencephalogram (EEG) to detect abnormal epileptiform activity. The decision to use antiseizure medication can be challenging when objective findings are missing. There is a need for new biomarkers to better diagnose epilepsy following a first seizure. Recently, an EEG-based novel analytical method was reported to detect paroxysmal slowing in the cortical network of patients with epilepsy. The aim of our study is to test this method's sensitivity and specificity to predict epilepsy following a first seizure. METHODS: We analyzed interictal EEGs of 70 patients admitted to the emergency department of a tertiary referral center after a first seizure. Clinical data from a follow-up period of at least 18 months were available. EEGs of 30 healthy controls were also analyzed and included. For each EEG, we applied an automated algorithm to detect paroxysmal slow wave events (PSWEs). RESULTS: Of patients presenting with a first seizure, 40% had at least one additional recurring seizure and were diagnosed with epilepsy. Sixty percent did not report additional seizures. A significantly higher occurrence of PSWEs was detected in the first interictal EEG test of those patients who were eventually diagnosed with epilepsy. Conducting the EEG test within 72 h after the first seizure significantly increased the likelihood of detecting PSWEs and the predictive value for epilepsy up to 82%. SIGNIFICANCE: The quantification of PSWEs by an automated algorithm can predict epilepsy and help the neurologist in evaluating a patient with a first seizure.


Asunto(s)
Epilepsia , Malformaciones del Sistema Nervioso , Encéfalo , Electroencefalografía/métodos , Epilepsia/complicaciones , Epilepsia/diagnóstico , Humanos , Convulsiones/diagnóstico , Convulsiones/etiología , Sensibilidad y Especificidad
11.
Brain ; 143(6): 1826-1842, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464655

RESUMEN

Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood-brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood-brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.


Asunto(s)
Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/patología , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Animales , Atletas , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Isquemia Encefálica/patología , Encefalopatía Traumática Crónica/patología , Imagen de Difusión Tensora , Fútbol Americano/lesiones , Humanos , Masculino , Microvasos/diagnóstico por imagen , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Tauopatías/patología , Estados Unidos , Sustancia Blanca/patología , Proteínas tau/metabolismo
12.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769073

RESUMEN

Traumatic brain injury (TBI) is the leading cause of death in young individuals, and is a major health concern that often leads to long-lasting complications. However, the electrophysiological events that occur immediately after traumatic brain injury, and may underlie impact outcomes, have not been fully elucidated. To investigate the electrophysiological events that immediately follow traumatic brain injury, a weight-drop model of traumatic brain injury was used in rats pre-implanted with epidural and intracerebral electrodes. Electrophysiological (near-direct current) recordings and simultaneous alternating current recordings of brain activity were started within seconds following impact. Cortical spreading depolarization (SD) and SD-induced spreading depression occurred in approximately 50% of mild and severe impacts. SD was recorded within three minutes after injury in either one or both brain hemispheres. Electrographic seizures were rare. While both TBI- and electrically induced SDs resulted in elevated oxidative stress, TBI-exposed brains showed a reduced antioxidant defense. In severe TBI, brainstem SD could be recorded in addition to cortical SD, but this did not lead to the death of the animals. Severe impact, however, led to immediate death in 24% of animals, and was electrocorticographically characterized by non-spreading depression (NSD) of activity followed by terminal SD in both cortex and brainstem.


Asunto(s)
Lesiones Traumáticas del Encéfalo/fisiopatología , Tronco Encefálico/fisiopatología , Depresión de Propagación Cortical , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Tronco Encefálico/metabolismo , Masculino , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley
13.
Ann Rheum Dis ; 79(12): 1580-1587, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33004325

RESUMEN

OBJECTIVES: To examine the association between blood-brain barrier (BBB) integrity, brain volume and cognitive dysfunction in adult patients with systemic lupus erythematosus (SLE). METHODS: A total of 65 ambulatory patients with SLE and 9 healthy controls underwent dynamic contrast-enhanced MRI scanning, for quantitative assessment of BBB permeability. Volumetric data were extracted using the VolBrain pipeline. Global cognitive function was evaluated using a screening battery consisting of tasks falling into five broad cognitive domains, and was compared between patients with normal versus extensive BBB leakage. RESULTS: Patients with SLE had significantly higher levels of BBB leakage compared with controls (p=0.04). Extensive BBB leakage (affecting over >9% of brain volume) was identified only in patients with SLE (16/65; 24.6%), who also had smaller right and left cerebral grey matter volumes compared with controls (p=0.04). Extensive BBB leakage was associated with lower global cognitive scores (p=0.02), and with the presence of impairment on one or more cognitive tasks (p=0.01). CONCLUSION: Our findings provide evidence for a link between extensive BBB leakage and changes in both brain structure and cognitive function in patients with SLE. Future studies should investigate the mechanisms underlying BBB-mediated cognitive impairment, validate the diagnostic utility of BBB imaging, and determine the potential of targeting the BBB as a therapeutic strategy in patients with SLE.


Asunto(s)
Barrera Hematoencefálica/patología , Encéfalo/patología , Disfunción Cognitiva/patología , Sustancia Gris/patología , Lupus Eritematoso Sistémico/patología , Adulto , Permeabilidad Capilar , Disfunción Cognitiva/etiología , Femenino , Humanos , Lupus Eritematoso Sistémico/complicaciones , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
14.
J Autoimmun ; 112: 102462, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32561150

RESUMEN

Nodding Syndrome (NS) is a fatal pediatric epilepsy of unknown etiology, accompanied by multiple neurological impairments, and associated with Onchocerca volvulus (Ov), malnutrition, war-induced trauma, and other insults. NS patients have neuroinflammation, and ~50% have cross-reactive Ov/Leiomodin-1 neurotoxic autoimmune antibodies. RESULTS: Studying 30 South Sudanese NS patients and a similar number of healthy subjects from the same geographical region, revealed autoimmune antibodies to 3 extracellular peptides of ionotropic glutamate receptors in NS patients: AMPA-GluR3B peptide antibodies (86%), NMDA-NR1 peptide antibodies (77%) and NMDA-NR2 peptide antibodies (87%) (in either 1:10, 1:100 or 1:1000 serum dilution). In contrast, NS patients did not have 26 other well-known autoantibodies that target the nervous system in several autoimmune-mediated neurological diseases. We demonstrated high expression of both AMPA-GluR3 and NMDA-NR1 in human neural cells, and also in normal human CD3+ T cells of both helper CD4+ and cytotoxic CD8+ types. Patient's GluR3B peptide antibodies were affinity-purified, and by themselves precipitated short 70 kDa neuronal GluR3. NS patient's affinity-purified GluR3B peptide antibodies also bound to, induced Reactive Oxygen Species (ROS) in, and killed both human neural cells and T cells within 1-2 hours only. NS patient's purified IgGs, or serum (1:10 or 1:30), induced similar effects. In vivo video EEG experiments in normal mice, revealed that when NS patient's purified IgGs were released continuously (24/7 for 1 week) in normal mouse brain, they induced all the following: 1.Seizures, 2. Cerebellar Purkinje cell loss, 3. Degeneration in the hippocampus and cerebral cortex, and 4. Elevation of CD3+ T cells, and of activated Mac-2+microglia and GFAP+astrocytes in both the gray and white matter of the cerebral cortex, hippocampus, corpus calossum and cerebellum of mice. NS patient's serum cytokines: IL-1ß, IL-2, IL-6, IL-8, TNFα, IFNγ, are reduced by 85-99% compared to healthy subjects, suggesting severe immunodeficiency in NS patients. This suspected immunodeficiency could be caused by combined effects of the: 1. Chronic Ov infection, 2. Malnutrition, 3. Killing of NS patient's T cells by patient's own GluR3B peptide autoimmune antibodies (alike the killing of normal human T cells by the NS patient's GluR3B peptide antibodies found herein in vitro). CONCLUSIONS: Regardless of NS etiology, NS patients suffer from 'Dual-targeted Autoimmune Sword': autoimmune AMPA GluR3B peptide antibodies that bind, induce ROS in, and kill both neural cells and T cells. These neurotoxic and immunotoxic GluR3B peptide autoimmune antibodies, and also NS patient's NMDA-NR1/NR2A and Ov/Leiomodin-1 autoimmune antibodies, must be silenced or removed. Moreover, the findings of this study are relevant not only to NS, but also to many more patients with other types of epilepsy, which have GluR3B peptide antibodies in serum and/or CSF. This claim is based on the following facts: 1. The GluR3 subunit is expressed in neural cells in crucial brains regions, in motor neurons in the spinal cord, and also in other cells in the body, among them T cells of the immune system, 2. The GluR3 subunit has diverse neurophysiological role, and its deletion or abnormal function can: disrupt oscillatory networks of both sleep and breathing, impair motor coordination and exploratory activity, and increase the susceptibility to generate seizures, 3. GluR3B peptide antibodies were found so far in ~27% of >300 epilepsy patients worldwide, which suffer from various other types of severe, intractable and enigmatic epilepsy, and which turned out to be 'Autoimmune Epilepsy'. Furthermore, the findings of this study could be relevant to different neurological diseases besides epilepsy, since other neurotransmitter-receptors autoantibodies are present in other neurological and psychiatric diseases, e.g. autoimmune antibodies against other GluRs, Dopamine receptors, GABA receptors, Acetylcholine receptors and others. These neurotransmitter-receptors autoimmune autoantibodies might also act as 'Dual-targeted Autoimmune Sword' and damage both neural cells and T cells (as the AMPA-GluR3B peptide antibodies induced in the present study), since T cells, alike neural cells, express most if not all these neurotransmitter receptors, and respond functionally to the respective neurotransmitters - a scientific and clinical topic we coined 'Nerve-Driven Immunity'.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Síndrome del Cabeceo/inmunología , Especies Reactivas de Oxígeno/metabolismo , Receptores AMPA/inmunología , Adolescente , Adulto , Autoanticuerpos/sangre , Autoanticuerpos/aislamiento & purificación , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Voluntarios Sanos , Humanos , Inmunoglobulina G , Masculino , Neuroinmunomodulación/inmunología , Neuronas/inmunología , Neuronas/patología , Síndrome del Cabeceo/sangre , Síndrome del Cabeceo/patología , Linfocitos T/inmunología , Linfocitos T/patología , Adulto Joven
15.
Epilepsia ; 61(3): 359-386, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196665

RESUMEN

Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Antioxidantes/uso terapéutico , Epilepsia Postraumática/prevención & control , Epilepsia/prevención & control , GABAérgicos/uso terapéutico , Factores Inmunológicos/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Acetilcisteína/uso terapéutico , Animales , Atorvastatina/uso terapéutico , Lesiones Traumáticas del Encéfalo/complicaciones , Ceftriaxona/uso terapéutico , Dibenzazepinas/uso terapéutico , Reposicionamiento de Medicamentos , Epilepsia/etiología , Eritropoyetina/uso terapéutico , Clorhidrato de Fingolimod/uso terapéutico , Gabapentina/uso terapéutico , Humanos , Inflamación , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Isoflurano/uso terapéutico , Levetiracetam/uso terapéutico , Losartán/uso terapéutico , Estrés Oxidativo , Pregabalina/uso terapéutico , Pirrolidinonas/uso terapéutico , Sirolimus/uso terapéutico , Accidente Cerebrovascular/complicaciones , Topiramato/uso terapéutico , Investigación Biomédica Traslacional , Vigabatrin/uso terapéutico
16.
Proc Natl Acad Sci U S A ; 114(25): E4996-E5005, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28584127

RESUMEN

Epilepsy is a common neurological disease, manifested in unprovoked recurrent seizures. Epileptogenesis may develop due to genetic or pharmacological origins or following injury, but it remains unclear how the unaffected brain escapes this susceptibility to seizures. Here, we report that dynamic changes in forebrain microRNA (miR)-211 in the mouse brain shift the threshold for spontaneous and pharmacologically induced seizures alongside changes in the cholinergic pathway genes, implicating this miR in the avoidance of seizures. We identified miR-211 as a putative attenuator of cholinergic-mediated seizures by intersecting forebrain miR profiles that were Argonaute precipitated, synaptic vesicle target enriched, or differentially expressed under pilocarpine-induced seizures, and validated TGFBR2 and the nicotinic antiinflammatory acetylcholine receptor nAChRa7 as murine and human miR-211 targets, respectively. To explore the link between miR-211 and epilepsy, we engineered dTg-211 mice with doxycycline-suppressible forebrain overexpression of miR-211. These mice reacted to doxycycline exposure by spontaneous electrocorticography-documented nonconvulsive seizures, accompanied by forebrain accumulation of the convulsive seizures mediating miR-134. RNA sequencing demonstrated in doxycycline-treated dTg-211 cortices overrepresentation of synaptic activity, Ca2+ transmembrane transport, TGFBR2 signaling, and cholinergic synapse pathways. Additionally, a cholinergic dysregulated mouse model overexpressing a miR refractory acetylcholinesterase-R splice variant showed a parallel propensity for convulsions, miR-211 decreases, and miR-134 elevation. Our findings demonstrate that in mice, dynamic miR-211 decreases induce hypersynchronization and nonconvulsive and convulsive seizures, accompanied by expression changes in cholinergic and TGFBR2 pathways as well as in miR-134. Realizing the importance of miR-211 dynamics opens new venues for translational diagnosis of and interference with epilepsy.


Asunto(s)
Encéfalo/metabolismo , Epilepsia/metabolismo , MicroARNs/metabolismo , Acetilcolina/farmacología , Acetilcolinesterasa/metabolismo , Animales , Encéfalo/efectos de los fármacos , Colinérgicos/farmacología , Epilepsia/tratamiento farmacológico , Humanos , Ratones , Ratones Transgénicos , Pilocarpina/farmacología , Receptores Nicotínicos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo
17.
Int J Mol Sci ; 21(2)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963328

RESUMEN

The blood-brain barrier (BBB) is a dynamic, highly selective barrier primarily formed by endothelial cells connected by tight junctions that separate the circulating blood from the brain extracellular fluid. The endothelial cells lining the brain microvessels are under the inductive influence of neighboring cell types, including astrocytes and pericytes. In addition to the anatomical characteristics of the BBB, various specific transport systems, enzymes and receptors regulate molecular and cellular traffic across the BBB. While the intact BBB prevents many macromolecules and immune cells from entering the brain, following epileptogenic brain insults the BBB changes its properties. Among BBB alterations, albumin extravasation and diapedesis of leucocytes from blood into brain parenchyma occur, inducing or contributing to epileptogenesis. Furthermore, seizures themselves may modulate BBB functions, permitting albumin extravasation, leading to activation of astrocytes and the innate immune system, and eventually modifications of neuronal networks. BBB alterations following seizures are not necessarily associated with enhanced drug penetration into the brain. Increased expression of multidrug efflux transporters such as P-glycoprotein likely act as a 'second line defense' mechanism to protect the brain from toxins. A better understanding of the complex alterations in BBB structure and function following seizures and in epilepsy may lead to novel therapeutic interventions allowing the prevention and treatment of epilepsy as well as other detrimental neuro-psychiatric sequelae of brain injury.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Epilepsia/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Albúminas/metabolismo , Animales , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , Uniones Estrechas/efectos de los fármacos
18.
Stroke ; 50(5): 1266-1269, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31009340

RESUMEN

Background and Purpose- The diagnosis of transient ischemic attack is challenging. Evidence of acute ischemia on MRI diffusion-weighted imaging is highly variable and confirmed in only about one-third of patients. This study investigated the significance of blood-brain barrier dysfunction (BBBD) mapping in patients with transient neurological deficits, as a diagnostic and prognostic biomarker required for risk stratification and stroke prevention. Methods- We used dynamic contrast-enhanced MRI to quantitatively map BBBD in a prospective cohort study of 57 patients diagnosed with transient ischemic attack/minor stroke and 50 healthy controls. Results- Brain volume with BBBD was significantly higher in patients compared with controls ( P=0.002). BBBD localization corresponded with the clinical presentation in 41 patients (72%) and was more extensive in patients with acute infarct on diffusion-weighted imaging ( P=0.05). Patients who developed new stroke during follow-up had a significantly greater BBBD at the initial presentation ( P=0.03) with a risk ratio of 5.35 for recurrent stroke. Conclusions- This is the first description of the extent and localization of BBBD in patients with transient ischemic attack/minor stroke. We propose BBBD mapping as a valuable tool for detection of subtle brain ischemia and a promising predictive biomarker required for risk stratification and stroke prevention.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Ataque Isquémico Transitorio/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Barrera Hematoencefálica/metabolismo , Estudios de Cohortes , Femenino , Humanos , Ataque Isquémico Transitorio/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos
19.
Neuroimage ; 200: 674-689, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096057

RESUMEN

We present a framework for along-tract analysis of white matter (WM) fiber bundles based on diffusion tensor imaging (DTI) and tractography. We introduce the novel concept of fiber-flux density for modeling fiber tracts' geometry, and combine it with diffusion-based measures to define vector descriptors called Fiber-Flux Diffusion Density (FFDD). The proposed model captures informative features of WM tracts at both the microscopic (diffusion-related) and macroscopic (geometry-related) scales, thus enabling improved sensitivity to subtle structural abnormalities that are not reflected by either diffusion or geometrical properties alone. A key step in this framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tracts enable meaningful inter-subject comparisons and group-wise statistical analysis. Moreover, we show that the FMM alignment can be generalized in a straight forward manner to a single-shot co-alignment of multiple fiber bundles. The proposed alignment technique is shown to outperform a well-established, commonly used DTI registration algorithm. We demonstrate the FFDD framework on the Human Connectome Project (HCP) diffusion MRI dataset, as well as on two different datasets of contact sports players. We test our method using longitudinal scans of a basketball player diagnosed with a traumatic brain injury, showing compatibility with structural MRI findings. We further perform a group study comparing mid- and post-season scans of 13 active football players exposed to repetitive head trauma, to 17 non-player control (NPC) subjects. Results reveal statistically significant FFDD differences (p-values<0.05) between the groups, as well as increased abnormalities over time at spatially-consistent locations within several major fiber tracts of football players.


Asunto(s)
Traumatismos en Atletas/patología , Conmoción Encefálica/patología , Imagen de Difusión Tensora/métodos , Sustancia Blanca/anatomía & histología , Adulto , Traumatismos en Atletas/diagnóstico por imagen , Conmoción Encefálica/diagnóstico por imagen , Humanos , Masculino , Sustancia Blanca/diagnóstico por imagen
20.
Neurobiol Dis ; 124: 373-378, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30590177

RESUMEN

The lack of early biomarkers of epileptogenesis precludes a sound prediction of epilepsy development after acute brain injuries and of the natural course of the disease thus impairing the development of antiepileptogenic treatments. We investigated whether the dimensional changes of nonlinear dynamics in EEG/ECoG signals, that were recorded in the early aftermath of different epileptogenic injuries, provide a measure to be exploited as a sensitive prognostic and predictive biomarker for epilepsy. Using three different models of epilepsy in two rodent species, we report a common and significant decrease of nonlinear dynamics dimension in EEG/ECoG tracings during early epileptogenesis. In particular, the magnitude of this dimensional decrease predicts the severity of ensuing epilepsy, and this measure is modulated by disease-modifying or antiepileptogenic treatments. The broad application of EEG/ECoG monitoring in epilepsy underlines the translational value of these findings for enriching the population of patients at risk for developing epilepsy in clinical investigations.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/fisiopatología , Animales , Lesiones Encefálicas/complicaciones , Epilepsia/etiología , Ratones , Dinámicas no Lineales , Ratas , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA