Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Dev Res ; 82(8): 1169-1181, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33983647

RESUMEN

Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/ß-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 µM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 µM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 µM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.


Asunto(s)
Antioxidantes/aislamiento & purificación , Extractos Vegetales/análisis , Tracheophyta/química , Ureasa/antagonistas & inhibidores , Antioxidantes/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Mediciones Luminiscentes , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/aislamiento & purificación , Ureasa/química
2.
J Med Virol ; 91(12): 2029-2048, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30431654

RESUMEN

Ebola virus disease (EVD), caused by Ebola viruses, resulted in more than 11 500 deaths according to a recent 2018 WHO report. With mortality rates up to 90%, it is nowadays one of the most deadly infectious diseases. However, no Food and Drug Administration-approved Ebola drugs or vaccines are available yet with the mainstay of therapy being supportive care. The high fatality rate and absence of effective treatment or vaccination make Ebola virus a category-A biothreat pathogen. Fortunately, a series of investigational countermeasures have been developed to control and prevent this global threat. This review summarizes the recent therapeutic advances and ongoing research progress from research and development to clinical trials in the development of small-molecule antiviral drugs, small-interference RNA molecules, phosphorodiamidate morpholino oligomers, full-length monoclonal antibodies, and vaccines. Moreover, difficulties are highlighted in the search for effective countermeasures against EVD with additional focus on the interplay between available in silico prediction methods and their evidenced potential in antiviral drug discovery.


Asunto(s)
Antivirales/uso terapéutico , Descubrimiento de Drogas , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/farmacología , Antivirales/farmacología , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Brotes de Enfermedades/prevención & control , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Macaca mulatta , Ratones , ARN Interferente Pequeño/farmacología
3.
Parasitol Res ; 118(5): 1533-1548, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30903349

RESUMEN

There is an urgent need to discover and develop new drugs to combat parasitic diseases as Chagas disease (Trypanosoma cruzi), sleeping sickness (Trypanosoma brucei), and leishmaniasis (Leishmania ssp.). These diseases are considered among the 13 most unattended diseases worldwide according to the WHO. In the present work, the synthesis of 14 arylsubstituted imidazoles and its molecular docking onto sterol 14α-demethylase (CYP51) was executed. In addition, the compounds, antiprotozoal activity against T. brucei, T. cruzi, Trypanosoma brucei rhodesiense, and Leishmania infantum was evaluated. In vitro antiparasitic results of the arylsubstituted imidazoles against T. brucei, T. cruzi, T.b. rhodesiense, and L. infantum indicated that all samples from arylsubstituted imidazole compounds presented interesting antiparasitic activity to various extent. The ligands 5a, 5c, 5e, 5f, 5g, 5i, and 5j exhibited strong activity against T. brucei, T. cruzi, T.b. rhodesiense, and L. infantum with IC50 values ranging from 0.86 to 10.23 µM. Most samples were cytotoxic against MRC-5 cell lines (1.12 < CC50 < 51.09 µM) and only ligand 5c showed a good selectivity against all tested parasites. According to the results of the molecular docking, the aromatic substituents in positions 1, 4, and 5 have mainly stabilizing hydrophobic interactions with the enzyme matrix, while the oxygen from NO2, SO3H, and OH groups interacts with the Fe2+ ion of the Heme group.


Asunto(s)
Antiprotozoarios/química , Enfermedad de Chagas/tratamiento farmacológico , Imidazoles/química , Leishmania infantum/enzimología , Leishmaniasis/tratamiento farmacológico , Esterol 14-Desmetilasa/química , Trypanosoma brucei brucei/enzimología , Trypanosoma cruzi/enzimología , Tripanosomiasis Africana/tratamiento farmacológico , Animales , Antiprotozoarios/farmacología , Línea Celular , Humanos , Imidazoles/farmacología , Leishmania infantum/efectos de los fármacos , Simulación del Acoplamiento Molecular , Esterol 14-Desmetilasa/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos
4.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652981

RESUMEN

The dental abnormalities are the typical features of many ectodermal dysplasias along with congenital malformations of nails, skin, hair, and sweat glands. However, several reports of non-syndromic/isolated tooth agenesis have also been found in the literature. The characteristic features of hypohidrotic ectodermal dysplasia (HED) comprise of hypodontia/oligodontia, along with hypohidrosis/anhidrosis, and hypotrichosis. Pathogenic variants in EDA, EDAR, EDARADD, and TRAF6, cause the phenotypic expression of HED. Genetic alterations in EDA and WNT10A cause particularly non-syndromic/isolated oligodontia. In the current project, we recruited 57 patients of 17 genetic pedigrees (A-Q) from different geographic regions of the world, including Pakistan, Egypt, Saudi Arabia, and Syria. The molecular investigation of different syndromic and non-syndromic dental conditions, including hypodontia, oligodontia, generalized odontodysplasia, and dental crowding was carried out by using exome and Sanger sequencing. We have identified a novel missense variant (c.311G>A; p.Arg104His) in WNT10A in three oligodontia patients of family A, two novel sequence variants (c.207delinsTT, p.Gly70Trpfs*25 and c.1300T>G; p.Try434Gly) in EDAR in three patients of family B and four patients of family C, respectively. To better understand the structural and functional consequences of missense variants in WNT10A and EDAR on the stability of the proteins, we have performed extensive molecular dynamic (MD) simulations. We have also identified three previously reported pathogenic variants (c.1076T>C; p.Met359Thr), (c.1133C>T; p.Thr378Met) and (c.594_595insC; Gly201Argfs*39) in EDA in family D (four patients), E (two patients) and F (one patient), correspondingly. Presently, our data explain the genetic cause of 18 syndromic and non-syndromic tooth agenesis patients in six autosomal recessive and X-linked pedigrees (A-F), which expand the mutational spectrum of these unique clinical manifestations.


Asunto(s)
Displasia Ectodermal Anhidrótica Tipo 1/patología , Ectodisplasinas/genética , Receptor Edar/genética , Simulación de Dinámica Molecular , Proteínas Wnt/genética , Displasia Ectodermal Anhidrótica Tipo 1/genética , Ectodisplasinas/química , Ectodisplasinas/metabolismo , Receptor Edar/química , Receptor Edar/metabolismo , Humanos , Mutación Missense , Linaje , Fenotipo , Estabilidad Proteica , Estructura Terciaria de Proteína , Secuenciación del Exoma , Proteínas Wnt/química , Proteínas Wnt/metabolismo
5.
Chemistry ; 24(48): 12695-12707, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29883012

RESUMEN

The synthesis, base pairing properties and in vitro (polymerase) and in vivo (E. coli) recognition of 2'-deoxynucleotides with a 2-amino-6-methyl-8-oxo-7,8-dihydro-purine (X), a 2-methyl-6-thiopurine (Y) and a 6-methyl-4-pyrimidone (Z) base moiety are described. As demonstrated by Tm measurements, the X and Y bases fail to form a self-complementary base pair. Despite this failure, enzymatic incorporation experiments show that selected DNA polymerases recognize the X nucleotide and incorporate this modified nucleotide versus X in the template. In vivo, X is mainly recognized as a A/G or C base; Y is recognized as a G or C base and Z is mostly recognized as T or C. Replacing functional groups in nucleobases normally involved in W-C recognition (6-carbonyl and 2-amino group of purine; 6-carbonyl of pyrimidine) readily leads to orthogonality (absence of base pairing with natural bases).

6.
Bioorg Med Chem ; 24(8): 1778-85, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26968651

RESUMEN

As part of a selection strategy for artificial nucleic acids (XNA) (to be considered as potential new information systems in vivo), we have carried out a modelling study on cyclohexanyl nucleic acids (CNA) duplexes and hairpins. CNA may form a duplex as well as hairpin structures, having the carbocyclic nucleosides in the (4)C1 conformation (with equatorial basis). The geometry of ds CNA is close to that of a HNA:RNA duplex. We demonstrated that CNA triphosphates function as a substrate for polymerases. Modelling experiments indicate that the monomers are probably presented to the polymerase in the (1)C4 conformation.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , ARN/química , ADN/síntesis química , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Polifosfatos/química , ARN/síntesis química , ARN/metabolismo , Electricidad Estática
8.
Biochem J ; 465(2): 259-70, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25360794

RESUMEN

Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast with a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, AFM and TEM, we generated a 3D structure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers compared with monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1.


Asunto(s)
Precursores Enzimáticos/química , Metaloproteinasa 9 de la Matriz/química , Modelos Moleculares , Complejos Multiproteicos/química , Inhibidor Tisular de Metaloproteinasa-1/química , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
10.
Nucleic Acids Res ; 38(8): 2541-50, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20097909

RESUMEN

Previous studies in our laboratory proved that certain functional groups are able to mimic the pyrophosphate moiety and act as leaving groups in the enzymatic polymerization of deoxyribonucleic acids by HIV-1 reverse transcriptase. When the potential leaving group possesses two carboxylic acid moieties linked to the nucleoside via a phosphoramidate bond, it is efficiently recognized by this error-prone enzyme, resulting in nucleotide incorporation into DNA. Here, we present a new efficient alternative leaving group, iminodiacetic acid, which displays enhanced kinetics and an enhanced elongation capacity compared to previous results obtained with amino acid deoxyadenosine phosphoramidates. Iminodiacetic acid phosphoramidate of deoxyadenosine monophosphate (IDA-dAMP) is processed by HIV-1 RT as a substrate for single nucleotide incorporation and displays a typical Michaelis-Menten kinetic profile. This novel substrate also proved to be successful in primer strand elongation of a seven-base template overhang. Modelling of this new substrate in the active site of the enzyme revealed that the interactions formed between the triphosphate moiety, magnesium ions and enzyme's residues could be different from those of the natural triphosphate substrate and is likely to involve additional amino acid residues. Preliminary testing for a potential metabolic accessibility lets us to envision its possible use in an orthogonal system for nucleic acid synthesis that would not influence or be influenced by genetic information from the outside.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , ADN/biosíntesis , Glicina/análogos & derivados , Adenosina Monofosfato/síntesis química , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , ADN/química , Glicina/síntesis química , Glicina/química , Glicina/metabolismo , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Cinética , Modelos Moleculares
11.
Eur J Pharm Sci ; 175: 106220, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618201

RESUMEN

With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease. The top hits were selected based on various binding free energy calculations followed by per-residue decomposition analysis. The selected hits were then evaluated for their biological potential with ZIKV protease inhibition assay and antiviral activity. Among 26 selected compounds, 8 compounds showed promising activity against ZIKV protease with a percentage inhibition of greater than 25 and 3 compounds displayed ∼50% at 10 µM, which indicates an enrichment rate of approximately 36% (threshold IC50 < 10 µM) in the ZIKV-NS2B-NS3 protease inhibition assay. Of these, only one compound (23) produced whole-cell anti-ZIKV activity, and the binding mode of 23 was extensively analyzed through long-run molecular dynamics simulations. The current study provides a promising starting point for the further development of novel compounds against ZIKV.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Antivirales/química , Antivirales/farmacología , Humanos , Péptido Hidrolasas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales , Virus Zika/química , Virus Zika/metabolismo , Infección por el Virus Zika/tratamiento farmacológico
12.
J Virol ; 84(9): 4277-88, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20181685

RESUMEN

A new class of N-(1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide inhibitors of influenza virus hemagglutinin (HA)-mediated membrane fusion that has a narrow and defined structure-activity relationship was identified. In Madin-Darby canine kidney (MDCK) cells infected with different strains of human influenza virus A/H3N2, the lead compound, 4c, displayed a 50% effective concentration of 3 to 23 muM and an antiviral selectivity index of 10. No activity was observed for A/H1N1, A/H5N1, A/H7N2, and B viruses. The activity of 4c was reduced considerably when added 30 min or later postinfection, indicating that 4c inhibits an early step in virus replication. 4c and its congeners inhibited influenza A/H3N2 virus-induced erythrocyte hemolysis at low pH. 4c-resistant virus mutants, selected in MDCK cells, contained either a single D112N change in the HA2 subunit of the viral HA or a combination of three substitutions, i.e., R220S (in HA1) and E57K (in HA2) and an A-T substitution at position 43 or 96 of HA2. The mutants showed efficiency for receptor binding and replication similar to that of wild-type virus yet displayed an increased pH of erythrocyte hemolysis. In polykaryon assays with cells expressing single-mutant HA proteins, the E57K, A96T, and D112N mutations resulted in 4c resistance, and the HA proteins containing R220S, A96T, and D112N mutations displayed an increased fusion pH. Molecular modeling identified a binding cavity for 4c involving arginine-54 and glutamic acid-57 in the HA2 subunit. Our studies with the new fusion inhibitor 4c confirm the importance of this HA region in the development of influenza virus fusion inhibitors.


Asunto(s)
Antivirales/farmacología , Azepinas/farmacología , Hemaglutininas Virales/metabolismo , Virus de la Influenza A/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Sustitución de Aminoácidos/genética , Animales , Antivirales/química , Azepinas/química , Línea Celular , Perros , Hemaglutininas Virales/química , Hemaglutininas Virales/genética , Humanos , Virus de la Influenza B/efectos de los fármacos , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Mutación Missense , Estructura Terciaria de Proteína , Relación Estructura-Actividad
13.
J Comput Aided Mol Des ; 25(4): 371-93, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21516317

RESUMEN

Bacterial ß-ketoacyl-acyl carrier protein synthase III (FabH) has become an attractive target for the development of new antibacterial agents which can overcome the increased resistance of these pathogens to antibiotics in clinical use. Despite several efforts have been dedicated to find inhibitors for this enzyme, it is not a straightforward task, mainly due its high flexibility which makes difficult the structure-based design of FabH inhibitors. Here, we present for the first time a Molecular Dynamics (MD) study of the E. colil FabH enzyme to explore its conformational space. We compare the flexibility of this enzyme for the unliganded protein and an enzyme-inhibitor complex and find a correspondence between our modeling results and the experimental evidence previously reported for this enzyme. Furthermore, through a 100 ns MD simulation of the unliganded enzyme we extract useful information related to the concerted motions that take place along the principal components of displacement. We also establish a relation between the presence of water molecules in the oxyanion hole with the conformational stability of structural important loops. Representative conformations of the binding pocket along the whole trajectory of the unliganded protein are selected through cluster analysis and we find that they contain a conformational diversity which is not provided by the X-ray structures of ecFabH. As a proof of this last hypothesis, we use a set of 10 FabH inhibitors and show that they cannot be correctly modeled in any available X-ray structure, while by using our set of conformations extracted from the MD simulations, this task can be accomplish. Finally, we show the ability of short MD simulations for the refinement of the docking binding poses and for MM-PBSA calculations to predict stable protein-inhibitor complexes in this enzyme.


Asunto(s)
Acetiltransferasas/antagonistas & inhibidores , Acetiltransferasas/química , Antibacterianos/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Simulación de Dinámica Molecular , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Sitios de Unión , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/química , Modelos Moleculares , Conformación Proteica , Agua/química
14.
Bioorg Med Chem ; 19(24): 7603-11, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22061826

RESUMEN

We report on Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) inhibitory activities of a series of new 3'- and 5'-modified thymidine analogues including α- and ß-derivatives. In addition, several analogues were synthesized in which the 4-oxygen was replaced by a more lipophilic sulfur atom to probe the influence of this modification on TMPKmt inhibitory activity. Several compounds showed an inhibitory potency in the low micromolar range, with the 5'-arylthiourea 4-thio-α-thymidine analogue being the most active one (K(i)=0.17 µM). This compound was capable of inhibiting mycobacteria growth at a concentration of 25 µg/mL.


Asunto(s)
Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/análogos & derivados , Inhibidores de Proteínas Quinasas/farmacología , Timidina/análogos & derivados , Timidina/farmacología , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/crecimiento & desarrollo , Nucleósido-Fosfato Quinasa/química , Nucleósido-Fosfato Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Timidina/síntesis química , Timidina Monofosfato/metabolismo , Tuberculosis/tratamiento farmacológico
15.
J Chem Theory Comput ; 17(6): 3814-3823, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34000809

RESUMEN

Puckering of the sugar unit in nucleosides and nucleotides is an important structural aspect that directly influences the helical structure of nucleic acids. The preference for specific puckering modes in nucleic acids can be analyzed via in silico conformational analysis, but the large amount of conformations and the accuracy of the analysis leads to an extensive amount of computational time. In this paper, we show that the combination of geometry optimizations with the HF-3c method with single point energies at the RI-MP2 level results in accurate results for the puckering potential energy surface (PES) of DNA and RNA nucleosides while significantly reducing the necessary computational time. Applying this method to a series of known xeno nucleic acids (XNAs) allowed us to rapidly explore the puckering PES of each of the respective nucleosides and to explore the puckering PES of six-membered modified XNA (HNA and ß-homo-DNA) for the first time.


Asunto(s)
Nucleósidos/química , Ribosa/química , ADN/química , Modelos Moleculares , Conformación de Ácido Nucleico , Teoría Cuántica , ARN/química , Termodinámica
16.
Front Pharmacol ; 12: 607026, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34040515

RESUMEN

The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD 50 . Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.

17.
Sci Rep ; 11(1): 1708, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462261

RESUMEN

Ifosfamide is a widely used chemotherapeutic agent having broad-spectrum efficacy against several tumors. However, nephro, hepato, neuro cardio, and hematological toxicities associated with ifosfamide render its use limited. These side effects could range from organ failure to life-threatening situations. The present study aimed to evaluate the attenuating efficiency of Berberis vulgaris root extract (BvRE), a potent nephroprotective, hepatoprotective, and lipid-lowering agent, against ifosfamide-induced toxicities. The study design comprised eight groups of Swiss albino rats to assess different dose regimes of BvRE and ifosfamide. Biochemical analysis of serum (serum albumin, blood urea nitrogen, creatinine, alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, total cholesterol, and triglycerides) along with complete blood count was performed. Kidney, liver, brain, and heart tissue homogenates were used to find malondialdehyde, catalase, and glutathione S-transferase levels in addition to the acetylcholinesterase of brain tissue. The results were further validated with the help of the histopathology of the selected organs. HeLa cells were used to assess the effect of BvRE on ifosfamide cytotoxicity in MTT assay. The results revealed that pre- and post-treatment regimens of BvRE, as well as the combination therapy exhibited marked protective effects against ifosfamide-induced nephro, hepato, neuro, and cardiotoxicity. Moreover, ifosfamide depicted a synergistic in vitro cytotoxic effect on HeLa cells in the presence of BvRE. These results corroborate that the combination therapy of ifosfamide with BvRE in cancer treatment can potentiate the anticancer effects of ifosfamide along with the amelioration of its conspicuous side effects.


Asunto(s)
Berberis/química , Encéfalo/efectos de los fármacos , Ifosfamida/farmacología , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Berberis/metabolismo , Recuento de Células Sanguíneas , Encéfalo/metabolismo , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Ratas
18.
J Biomol Struct Dyn ; 39(13): 4936-4948, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32579061

RESUMEN

The SARS-CoV-2 was confirmed to cause the global pandemic of coronavirus disease 2019 (COVID-19). The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV. In this work, we present a structure-based study to identify potential covalent inhibitors containing a variety of chemical warheads. The targeted Asinex Focused Covalent (AFCL) library was screened based on different reaction types and potential covalent inhibitors were identified. In addition, we screened FDA-approved protease inhibitors to find candidates to be repurposed against SARS-CoV-2 3CLpro. A number of compounds with significant covalent docking scores were identified. These compounds were able to establish a covalent bond (C-S) with the reactive thiol group of Cys145 and to form favorable interactions with residues lining the substrate-binding site. Moreover, paritaprevir and simeprevir from FDA-approved protease inhibitors were identified as potential inhibitors of SARS-CoV-2 3CLpro. The mechanism and dynamic stability of binding between the identified compounds and SARS-CoV-2 3CLpro were characterized by molecular dynamics (MD) simulations. The identified compounds are potential inhibitors worthy of further development as COVID-19 drugs. Importantly, the identified FDA-approved anti-hepatitis-C virus (HCV) drugs paritaprevir and simeprevir could be ready for clinical trials to treat infected patients and help curb COVID-19. Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología
19.
J Pharm Anal ; 10(4): 320-328, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32346490

RESUMEN

Recently emerged SARS-CoV-2 caused a major outbreak of coronavirus disease 2019 (COVID-19) and instigated a widespread fear, threatening global health safety. To date, no licensed antiviral drugs or vaccines are available against COVID-19 although several clinical trials are under way to test possible therapies. During this urgent situation, computational drug discovery methods provide an alternative to tiresome high-throughput screening, particularly in the hit-to-lead-optimization stage. Identification of small molecules that specifically target viral replication apparatus has indicated the highest potential towards antiviral drug discovery. In this work, we present potential compounds that specifically target SARS-CoV-2 vital proteins, including the main protease, Nsp12 RNA polymerase and Nsp13 helicase. An integrative virtual screening and molecular dynamics simulations approach has facilitated the identification of potential binding modes and favourable molecular interaction profile of corresponding compounds. Moreover, the identification of structurally important binding site residues in conserved motifs located inside the active site highlights relative importance of ligand binding based on residual energy decomposition analysis. Although the current study lacks experimental validation, the structural information obtained from this computational study has paved way for the design of targeted inhibitors to combat COVID-19 outbreak.

20.
Comput Biol Chem ; 89: 107376, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32979815

RESUMEN

Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 µM) and MOTL-4 cells (11.8 µM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Antivirales/química , COVID-19/virología , Línea Celular Tumoral , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/química , Evaluación Preclínica de Medicamentos , Humanos , Células Jurkat , Modelos Moleculares , Estructura Molecular , Ubiquitina Tiolesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA