Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(17): e110698, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844135

RESUMEN

The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Fosfolipasa D , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
2.
Mol Cell ; 63(6): 1034-43, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635761

RESUMEN

Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.


Asunto(s)
Dinaminas/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Testículo/metabolismo , Animales , Sitios de Unión , Dinaminas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Guanosina Trifosfato/metabolismo , Masculino , Ratones , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Fosfolipasa D/metabolismo , Unión Proteica , Transducción de Señal , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Testículo/ultraestructura
3.
Mol Cell ; 63(6): 1021-33, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27618486

RESUMEN

Twist has been shown to cause treatment failure, cancer progression, and cancer-related death. However, strategies that directly target Twist are not yet conceivable. Here we reveal that K63-linked ubiquitination is a crucial regulatory mechanism for Twist activation. Through an E3 ligase screen and biochemical studies, we unexpectedly identified that RNF8 functions as a direct Twist activator by triggering K63-linked ubiquitination of Twist. RNF8-promoted Twist ubiquitination is required for Twist localization to the nucleus for subsequent EMT and CSC functions, thereby conferring chemoresistance. Our histological analyses showed that RNF8 expression is upregulated and correlated with disease progression, EMT features, and poor patient survival in breast cancer. Moreover, RNF8 regulates cancer cell migration and invasion and cancer metastasis, recapitulating the effect of Twist. Together, our findings reveal a previously unrecognized tumor-promoting function of RNF8 and provide evidence that targeting RNF8 is an appealing strategy to tackle tumor aggressiveness and treatment resistance.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Daño del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Genes Reporteros , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Lisina/metabolismo , Células MCF-7 , Ratones Desnudos , Invasividad Neoplásica , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Proteína 1 Relacionada con Twist/antagonistas & inhibidores , Proteína 1 Relacionada con Twist/metabolismo , Ubiquitina-Proteína Ligasas , Ubiquitinación
4.
Nat Chem Biol ; 16(4): 400-407, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32198492

RESUMEN

The signal transduction enzyme phospholipase D1 (PLD1) hydrolyzes phosphatidylcholine to generate the lipid second-messenger phosphatidic acid, which plays roles in disease processes such as thrombosis and cancer. PLD1 is directly and synergistically regulated by protein kinase C, Arf and Rho GTPases, and the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Here, we present a 1.8 Å-resolution crystal structure of the human PLD1 catalytic domain, which is characterized by a globular fold with a funnel-shaped hydrophobic cavity leading to the active site. Adjacent is a PIP2-binding polybasic pocket at the membrane interface that is essential for activity. The C terminus folds into and contributes part of the catalytic pocket, which harbors a phosphohistidine that mimics an intermediate stage of the catalytic cycle. Mapping of PLD1 mutations that disrupt RhoA activation identifies the RhoA-PLD1 binding interface. This structure sheds light on PLD1 regulation by lipid and protein effectors, enabling rationale inhibitor design for this well-studied therapeutic target.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/ultraestructura , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células COS , Catálisis , Dominio Catalítico , Chlorocebus aethiops , Humanos , Lípidos de la Membrana , Fosfatidilcolinas , Unión Proteica , Proteína Quinasa C/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal/efectos de los fármacos
5.
Handb Exp Pharmacol ; 259: 79-88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31541323

RESUMEN

Functions for phospholipase D1 and D2 (PLD1 and PLD2), the canonical isoforms of the PLD superfamily in mammals, have been explored using cell biological and animal disease models for two decades. PLD1 and PLD2, which are activated as a consequence of extracellular signaling events and generate the second messenger signaling lipid phosphatidic acid (PA), have been reported to play roles in settings ranging from platelet activation to the response to cardiac ischemia, viral infection, neurodegenerative disease, and cancer. Of these, the most tractable as therapeutic targets may be thrombotic disease and cancer, as will be discussed here in the context of ongoing efforts to develop small molecule PLD inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Neoplasias/enzimología , Fosfolipasa D/antagonistas & inhibidores , Trombosis/enzimología , Animales , Humanos , Isoenzimas/antagonistas & inhibidores , Transducción de Señal
6.
Adv Exp Med Biol ; 1259: 77-87, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32578172

RESUMEN

The lipid-modifying signal transduction enzyme phospholipase D (PLD) has been proposed to have roles in oncogenic processes for well-on 30 years, with most of the early literature focused on potential functions for PLD in the biology of the tumor cells themselves. While such roles remain under investigation, evidence has also now been generated to support additional roles for PLD, in particular PLD1, in the tumor microenvironment, including effects on neoangiogenesis, the supply of nutrients, interactions of platelets with circulating cancer cells, the response of the immune system, and exosome biology. Here, we review these lines of investigation, accompanied by a discussion of the limitations of the existing studies and some cautionary notes regarding the study and interpretation of PLD function using model systems.


Asunto(s)
Neoplasias/metabolismo , Fosfolipasa D/metabolismo , Microambiente Tumoral , Animales , Humanos , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Transducción de Señal
7.
Mol Cell ; 39(3): 421-32, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20705243

RESUMEN

Cyclic phosphatidic acid (1-acyl-2,3-cyclic-glycerophosphate, CPA), one of nature's simplest phospholipids, is found in cells from slime mold to humans and has a largely unknown function. We find here that CPA is generated in mammalian cells in a stimulus-coupled manner by phospholipase D2 (PLD2) and binds to and inhibits the nuclear hormone receptor PPARgamma with nanomolar affinity and high specificity through stabilizing its interaction with the corepressor SMRT. CPA production inhibits the PPARgamma target-gene transcription that normally drives adipocytic differentiation of 3T3-L1 cells, lipid accumulation in RAW264.7 cells and primary mouse macrophages, and arterial wall remodeling in a rat model in vivo. Inhibition of PLD2 by shRNA, a dominant-negative mutant, or a small molecule inhibitor blocks CPA production and relieves PPARgamma inhibition. We conclude that CPA is a second messenger and a physiological inhibitor of PPARgamma, revealing that PPARgamma is regulated by endogenous agonists as well as by antagonists.


Asunto(s)
Adipocitos/metabolismo , Macrófagos/metabolismo , PPAR gamma/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Células 3T3-L1 , Animales , Diferenciación Celular/fisiología , Ratones , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , PPAR gamma/genética , Ácidos Fosfatidicos/genética , Fosfolipasa D/genética , Ratas , Transcripción Genética/fisiología
8.
J Lipid Res ; 56(12): 2229-37, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25926691

RESUMEN

Individual members of the mammalian phospholipase D (PLD) superfamily undertake roles that extend from generating the second messenger signaling lipid, phosphatidic acid, through hydrolysis of the membrane phospholipid, phosphatidylcholine, to functioning as an endonuclease to generate small RNAs and facilitating membrane vesicle trafficking through seemingly nonenzymatic mechanisms. With recent advances in genome-wide association studies, RNA interference screens, next-generation sequencing approaches, and phenotypic analyses of knockout mice, roles for PLD family members are being uncovered in autoimmune, infectious neurodegenerative, and cardiovascular disease, as well as in cancer. Some of these disease settings pose opportunities for small molecule inhibitory therapeutics, which are currently in development.


Asunto(s)
Fosfolipasa D/metabolismo , Animales , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
J Biol Chem ; 289(33): 22567-22574, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24990946

RESUMEN

Phospholipase D enzymes have long been proposed to play multiple cell biological roles in cancer. With the generation of phospholipase D1 (PLD1)-deficient mice and the development of small molecule PLD-specific inhibitors, in vivo roles for PLD1 in cancer are now being defined, both in the tumor cells and in the tumor environment. We review here tools now used to explore in vivo roles for PLD1 in cancer and summarize recent findings regarding functions in angiogenesis and metastasis.


Asunto(s)
Neoplasias/enzimología , Neovascularización Patológica/metabolismo , Fosfolipasa D/metabolismo , Microambiente Tumoral , Animales , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ratones Mutantes , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/genética
10.
J Biol Chem ; 289(16): 11497-11511, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24599962

RESUMEN

Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.


Asunto(s)
Mitocondrias/enzimología , Dinámicas Mitocondriales/fisiología , Fosfatidato Fosfatasa/metabolismo , Cola del Espermatozoide/enzimología , Espermatogénesis/fisiología , Animales , Cardiolipinas/genética , Cardiolipinas/metabolismo , Células HeLa , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosfatidato Fosfatasa/genética , Ácidos Fosfatidicos/genética , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
11.
Nat Cell Biol ; 9(6): 706-12, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17486115

RESUMEN

The activation of Ras by the guanine nucleotide-exchange factor Son of sevenless (Sos) constitutes the rate-limiting step in the transduction process that links receptor tyrosine kinases to Ras-triggered intracellular signalling pathways. A prerequisite for the function of Sos in this context is its ligand-dependent membrane recruitment, and the prevailing model implicates both the Sos carboxy-terminal proline-rich motifs and amino-terminal pleckstrin homology (PH) domain in this process. Here, we describe a previously unrecognized pathway for the PH domain-dependent membrane recruitment of Sos that is initiated by the growth factor-induced generation of phosphatidic acid via the signalling enzyme phospholipase D2 (PLD2). Phosphatidic acid interacts with a defined site in the Sos PH domain with high affinity and specificity. This interaction is essential for epidermal growth factor (EGF)-induced Sos membrane recruitment and Ras activation. Our findings establish a crucial role for PLD2 in the coupling of extracellular signals to Sos-mediated Ras activation, and provide new insights into the spatial coordination of this activation event.


Asunto(s)
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Proteína SOS1/metabolismo , Proteínas ras/metabolismo , Secuencias de Aminoácidos/fisiología , Animales , Sitios de Unión/fisiología , Células COS , Comunicación Celular/fisiología , Chlorocebus aethiops , Endocitosis/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/genética , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Proteína SOS1/química , Proteína SOS1/genética , Transducción de Señal/fisiología
12.
Arterioscler Thromb Vasc Biol ; 33(9): 2212-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23868933

RESUMEN

OBJECTIVE: We recently showed that mice lacking the lipid signaling enzyme phospholipase (PL) D1 or both PLD isoforms (PLD1 and PLD2) were protected from pathological thrombus formation and ischemic stroke, whereas hemostasis was not impaired in these animals. We sought to assess whether pharmacological inhibition of PLD activity affects hemostasis, thrombosis, and thrombo-inflammatory brain infarction in mice. APPROACH AND RESULTS: Treatment of platelets with the reversible, small molecule PLD inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI), led to a specific blockade of PLD activity that was associated with reduced α-granule release and integrin activation. Mice that received FIPI at a dose of 3 mg/kg displayed reduced occlusive thrombus formation upon chemical injury of carotid arteries or mesenterial arterioles. Similarly, FIPI-treated mice had smaller infarct sizes and significantly better motor and neurological function 24 hours after transient middle cerebral artery occlusion. This protective effect was not associated with major intracerebral hemorrhage or prolonged tail bleeding times. CONCLUSIONS: These results provide the first evidence that pharmacological PLD inhibition might provide a safe therapeutic strategy to prevent arterial thrombosis and ischemic stroke.


Asunto(s)
Plaquetas/efectos de los fármacos , Enfermedades de las Arterias Carótidas/prevención & control , Domperidona/análogos & derivados , Inhibidores Enzimáticos/farmacología , Fibrinolíticos/farmacología , Indoles/farmacología , Infarto de la Arteria Cerebral Media/prevención & control , Fosfolipasa D/antagonistas & inhibidores , Trombosis/prevención & control , Animales , Plaquetas/enzimología , Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/enzimología , Enfermedades de las Arterias Carótidas/genética , Enfermedades de las Arterias Carótidas/fisiopatología , Modelos Animales de Enfermedad , Domperidona/farmacología , Relación Dosis-Respuesta a Droga , Hemostasis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/fisiopatología , Integrinas/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D/deficiencia , Fosfolipasa D/genética , Recuperación de la Función , Trombosis/sangre , Trombosis/enzimología , Trombosis/genética , Trombosis/fisiopatología , Factores de Tiempo
13.
Nat Cell Biol ; 8(11): 1255-62, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17028579

RESUMEN

Fusion of vesicles into target membranes during many types of regulated exocytosis requires both SNARE-complex proteins and fusogenic lipids, such as phosphatidic acid. Mitochondrial fusion is less well understood but distinct, as it is mediated instead by the protein Mitofusin (Mfn). Here, we identify an ancestral member of the phospholipase D (PLD) superfamily of lipid-modifying enzymes that is required for mitochondrial fusion. Mitochondrial PLD (MitoPLD) targets to the external face of mitochondria and promotes trans-mitochondrial membrane adherence in a Mfn-dependent manner by hydrolysing cardiolipin to generate phosphatidic acid. These findings reveal that although mitochondrial fusion and regulated exocytic fusion are mediated by distinct sets of protein machinery, the underlying processes are unexpectedly linked by the generation of a common fusogenic lipid. Moreover, our findings suggest a novel basis for the mitochondrial fragmentation observed during apoptosis.


Asunto(s)
Exocitosis/fisiología , GTP Fosfohidrolasas/fisiología , Fusión de Membrana/fisiología , Membranas Mitocondriales/fisiología , Ácidos Fosfatidicos/metabolismo , Proteínas SNARE/fisiología , Animales , Western Blotting , Cardiolipinas/metabolismo , Dimerización , GTP Fosfohidrolasas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Ratones , Microscopía Confocal , Microscopía Electrónica , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Células 3T3 NIH , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Interferencia de ARN , Transfección
14.
J Biol Chem ; 285(46): 35979-87, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20826779

RESUMEN

Phosphatidic acid (PA) is one of the major phospholipids in the plasma membrane. Although it has been reported that PA plays key roles in cell survival and morphology, it remains unknown when and where PA is produced in the living cell. Based on the principle of Förster resonance energy transfer (FRET), we generated PA biosensor, and named Pii (phosphatidic acid indicator). In these biosensors, the lipid-binding domain of DOCK2 is sandwiched with the cyan fluorescent protein and yellow fluorescent protein and is tagged with the plasma membrane-targeting sequence of K-Ras. The addition of synthetic PA, or the activation of phospholipase D or diacylglycerol kinase at the plasma membrane, changed the level of FRET in Pii-expressing cells, demonstrating the response of Pii to PA. The biosensor also detected divergent PA content among various cell lines as well as within one cell line. Interestingly, the growth factor-induced increment in PA content correlated negatively with the basal PA content before stimulation, suggesting the presence of an upper threshold in the PA concentration at the plasma membrane. The biosensor also revealed uneven PA distribution within the cell, i.e. the basal level and growth factor-induced accumulation of PA was higher at the cell-free edges than at the cell-cell contact region. An insufficient increase in PA may account for ineffective Ras activation at areas of cell-cell contact. In conclusion, the PA biosensor Pii is a versatile tool for examining heterogeneity in the content and distribution of PA in single cells as well as among different cells.


Asunto(s)
Técnicas Biosensibles/métodos , Membrana Celular/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Ácidos Fosfatidicos/análisis , Animales , Sitios de Unión/genética , Células COS , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Proteínas Activadoras de GTPasa , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Uniones Intercelulares/química , Uniones Intercelulares/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Transfección
15.
J Biol Chem ; 285(9): 6419-24, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20042605

RESUMEN

Myosin II association with actin, which triggers contraction, is regulated by orchestrated waves of phosphorylation/dephosphorylation of the myosin regulatory light chain. Blocking myosin regulatory light chain phosphorylation with small molecule inhibitors alters the shape, adhesion, and migration of many types of smooth muscle and cancer cells. Dephosphorylation is mediated by myosin phosphatase (MP), a complex that consists of a catalytic subunit (protein phosphatase 1c, PP1c), a large subunit (myosin phosphatase targeting subunit, MYPT), and a small subunit of unknown function. MYPT functions by targeting PP1c onto its substrate, phosphorylated myosin II. Using RNA interference, we show here that stability of PP1c beta and MYPT1 is interdependent; knocking down one of the subunits decreases the expression level of the other. Associated changes in cell shape also occur, characterized by flattening and spreading accompanied by increased cortical actin, and cell numbers decrease secondary to apoptosis. Of the three highly conserved isoforms of PP1c, we show that MYPT1 binding is restricted to PP1c beta, and, using chimeric analysis and site-directed mutations, that the central region of PP1c beta confers the isoform-specific binding. This finding was unexpected because the MP crystal structure has been solved and was reported to identify the variable, C-terminal domain of PP1c beta as being the region key for isoform-specific interaction with MYPT1. These findings suggest a potential screening strategy for cardiovascular and cancer therapeutic agents based on destabilizing MP complex formation and function.


Asunto(s)
Fosfatasa de Miosina de Cadena Ligera/metabolismo , Proteína Fosfatasa 1/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Regulación de la Expresión Génica , Isoenzimas , Mutagénesis Sitio-Dirigida , Cadenas Ligeras de Miosina , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/genética , Estabilidad Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
16.
J Biol Chem ; 285(21): 15837-47, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20304930

RESUMEN

Phosphatidic acid (PA) is a pleiotropic lipid second messenger in mammalian cells. We report here that extracellular PA acts as a leukocyte chemoattractant, as membrane-soluble dioleoyl-PA (DOPA) elicits actin polymerization and chemotaxis of human neutrophils and differentiated proleukemic HL-60 cells. We show that the mechanism for this involves the S6 kinase (S6K) signaling enzyme. Chemotaxis was inhibited >90% by the S6K inhibitors rapamycin and bisindolylmaleimide and by S6K1 silencing using double-stranded RNA. However, it was only moderately ( approximately 30%) inhibited by mTOR siRNA, indicating the presence of an mTOR-independent mechanism for S6K. Exogenous PA led to robust time- and dose-dependent increases in S6K enzymatic activity and Thr(421)/Ser(424) phosphorylation, further supporting a PA/S6K connection. We also investigated whether intracellular PA production affects cell migration. Overexpression of phospholipase D2 (PLD2) and, to a lesser extent, PLD1, resulted in elevation of both S6K activity and chemokinesis, whereas PLD silencing was inhibitory. Because the lipase-inactive PLD2 mutants K444R and K758R neither activated S6K nor induced chemotaxis, intracellular PA is needed for this form of cell migration. Lastly, we demonstrated a connection between extracellular and intracellular PA. Using an enhanced green fluorescent protein-derived PA sensor (pEGFP-Spo20PABD), we showed that exogenous PA or PA generated in situ by bacterial (Streptomyces chromofuscus) PLD enters the cell and accumulates in vesicle-like cytoplasmic structures. In summary, we report the discovery of PA as a leukocyte chemoattractant via cell entry and activation of S6K to mediate the cytoskeletal actin polymerization and leukocyte chemotaxis required for the immune function of these cells.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis/fisiología , Neutrófilos/enzimología , Ácidos Fosfatidicos/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sistemas de Mensajero Secundario/fisiología , Actinas/metabolismo , Factores Quimiotácticos/genética , Factores Quimiotácticos/inmunología , Quimiotaxis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Células HL-60 , Humanos , Inmunosupresores/farmacología , Indoles/farmacología , Maleimidas/farmacología , Mutación Missense , Neutrófilos/inmunología , Ácidos Fosfatidicos/inmunología , Fosfolipasa D/biosíntesis , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/inmunología , Sirolimus/farmacología , Streptomyces/inmunología , Streptomyces/metabolismo
17.
J Biol Chem ; 285(18): 13580-8, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20189990

RESUMEN

Phospholipase D (PLD) is an important lipase in many cellular processes, including vesicular trafficking, cell survival, and cell migration. In the present study, we show that PLD1, but not PLD2, is posttranslationally modified by multi-monoubiquitination. Intriguingly, suppression of lipase activity either by mutation of the HKD motif (PLD1 H896R, K898R, or D903A) or the phosphatidylinositol 4,5-bisphosphate binding motif (PLD1 R691G,R695G) or through use of PLD-selective inhibitors impaired the ubiquitination of PLD1, although stimulation of lipase activity by phorbol 12-myristate 13-acetate did not enhance its ubiquitination. A palmitoylation-deficient mutant PLD1 allele, which exhibits altered patterns of vesicular trafficking, had significantly lower levels of monoubiquitination. In addition, the expression of ubiquitin-fused PLD1 induced aberrantly enlarged vesicles partially co-localized with the Golgi complex but not with early endosomes. The altered localization was reduced by the K898R mutation, suggesting a role of multi-monoubiquitination in PLD1 subcellular localization. Surprisingly, the degradation of PLD1, but not of PLD1 K898R or PLD2, was blocked by inhibitors of proteasomes but not by inhibitors of lysosomes or other proteases, suggesting a role of the ubiquitination in proteasomal degradation of PLD1. In summary, our studies show that PLD1, but not PLD2, is multi-monoubiquitinated. The ubiquitination modification might represent a novel regulatory mechanism in PLD1 functioning, particularly in the context of subcellular trafficking between different membrane compartments.


Asunto(s)
Membrana Celular/enzimología , Ácido Palmítico/metabolismo , Fosfolipasa D/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Ubiquitinación/fisiología , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Células CHO , Células COS , Carcinógenos/farmacología , Membrana Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Chlorocebus aethiops , Cricetinae , Cricetulus , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Células HeLa , Humanos , Mutación Missense , Fosfolipasa D/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Acetato de Tetradecanoilforbol/farmacología , Ubiquitinación/efectos de los fármacos
18.
J Exp Med ; 201(6): 859-70, 2005 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-15767368

RESUMEN

The membrane phospholipid phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P(2)] is a critical signal transducer in eukaryotic cells. However, the physiological roles of the type I phosphatidylinositol phosphate kinases (PIPKIs) that synthesize PI(4,5)P(2) are largely unknown. Here, we show that the alpha isozyme of PIPKI (PIPKIalpha) negatively regulates mast cell functions and anaphylactic responses. In vitro, PIPKIalpha-deficient mast cells exhibited increased degranulation and cytokine production after Fcepsilon receptor-I cross-linking. In vivo, PIPKIalpha(-/-) mice displayed enhanced passive cutaneous and systemic anaphylaxis. Filamentous actin was diminished in PIPKIalpha(-/-) mast cells, and enhanced degranulation observed in the absence of PIPKIalpha was also seen in wild-type mast cells treated with latrunculin, a pharmacological inhibitor of actin polymerization. Moreover, the association of FcepsilonRI with lipid rafts and FcepsilonRI-mediated activation of signaling proteins was augmented in PIPKIalpha(-/-) mast cells. Thus, PIPKIalpha is a negative regulator of FcepsilonRI-mediated cellular responses and anaphylaxis, which functions by controlling the actin cytoskeleton and dynamics of FcepsilonRI signaling. Our results indicate that the different PIPKI isoforms might be functionally specialized.


Asunto(s)
Anafilaxia/metabolismo , Señalización del Calcio/fisiología , Degranulación de la Célula/fisiología , Mastocitos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Actinas/metabolismo , Anafilaxia/genética , Animales , Señalización del Calcio/genética , Degranulación de la Célula/genética , Células Cultivadas , Isoenzimas/genética , Isoenzimas/metabolismo , Microdominios de Membrana/metabolismo , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de IgE/metabolismo , Tiazoles/farmacología
19.
BMC Biol ; 8: 100, 2010 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-20659315

RESUMEN

BACKGROUND: Mitochondria are highly dynamic organelles whose morphology and position within the cell is tightly coupled to metabolic function. There is a limited list of essential proteins that regulate mitochondrial morphology and the mechanisms that govern mitochondrial dynamics are poorly understood. However, recent evidence indicates that the core machinery that governs mitochondrial dynamics is linked within complex intracellular signalling cascades, including apoptotic pathways, cell cycle transitions and nuclear factor kappa B activation. Given the emerging importance of mitochondrial plasticity in cell signalling pathways and metabolism, it is essential that we develop tools to quantitatively analyse the processes of fission and fusion. In terms of mitochondrial fusion, the field currently relies upon on semi-quantitative assays which, even under optimal conditions, are labour-intensive, low-throughput and require complex imaging techniques. RESULTS: In order to overcome these technical limitations, we have developed a new, highly quantitative cell-free assay for mitochondrial fusion in mammalian cells. This assay system has allowed us to establish the energetic requirements for mitochondrial fusion. In addition, our data reveal a dependence on active protein phosphorylation for mitochondrial fusion, confirming emerging evidence that mitochondrial fusion is tightly integrated within the global cellular response to signaling events. Indeed, we have shown that cytosol derived from cells stimulated with different triggers either enhance or inhibit the cell-free fusion reaction. CONCLUSIONS: The adaptation of this system to high-throughput analysis will provide an unprecedented opportunity to identify and characterize novel regulatory factors. In addition, it provides a framework for a detailed mechanistic analysis of the process of mitochondrial fusion and the various axis of regulation that impinge upon this process in a wide range of cellular conditions.See Commentary: http://www.biomedcentral.com/1741-7007/8/99.


Asunto(s)
Bioquímica/métodos , Fusión de Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Células HeLa , Humanos , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Nucleótidos/metabolismo
20.
Adv Biol Regul ; 79: 100783, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495125

RESUMEN

Mammalian phospholipase D (PLD) generates phosphatidic acid, a dynamic lipid secondary messenger involved with a broad spectrum of cellular functions including but not limited to metabolism, migration, and exocytosis. As a promising pharmaceutical target, the biochemical properties of PLD have been well characterized. This has led to the recent crystal structures of human PLD1 and PLD2, the development of PLD specific pharmacological inhibitors, and the identification of cellular regulators of PLD. In this review, we discuss the PLD1 and PLD2 structures, PLD inhibition by small molecules, and the regulation of PLD activity by effector proteins and lipids.


Asunto(s)
Fosfolipasa D/química , Fosfolipasa D/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/antagonistas & inhibidores , Fosfolipasa D/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA