RESUMEN
Eight plant-based foods: oat flour and pureed apple, blackcurrant, carrot, gold- and green-fleshed kiwifruit, pumpkin, sweetcorn, were pre-digested and fermented with pooled inocula of weaning infants' faecal bacteria in an in vitro hindgut model. Inulin and water were included as controls. The pre-digested foods were analysed for digestion-resistant fibre-derived sugar composition and standardised to the same total fibre concentration prior to fermentation. The food-microbiome interactions were then characterised by measuring microbial acid and gas metabolites, microbial glycosidase activity and determining microbiome structure. At the physiologically relevant time of 10 h of fermentation, the xyloglucan-rich apple and blackcurrant favoured a propiogenic metabolic and microbiome profile with no measurable gas production. Glucose-rich, xyloglucan-poor pumpkin caused the greatest increases in lactate and acetate (indicative of high fermentability) commensurate with increased bifidobacteria. Glucose-rich, xyloglucan-poor oats and sweetcorn, and arabinogalactan-rich carrot also increased lactate and acetate, and were more stimulatory of clostridial families, which are indicative of increased microbial diversity and gut and immune health. Inulin favoured a probiotic-driven consortium, while water supported a proteolytic microbiome. This study shows that the fibre-derived sugar composition of complementary foods may shape infant gut microbiome structure and metabolic activity, at least in vitro.
Asunto(s)
Bacterias/metabolismo , Fibras de la Dieta/análisis , Fermentación , Microbioma Gastrointestinal , Azúcares/análisis , Avena/química , Bacterias/clasificación , Bacterias/enzimología , Ácidos Carboxílicos/metabolismo , Fibras de la Dieta/metabolismo , Heces/microbiología , Frutas/química , Glicósido Hidrolasas/metabolismo , Humanos , Lactante , Azúcares/metabolismo , Verduras/química , DesteteRESUMEN
The digestibility of starchy foods, such as potatoes, can be characterized by the proportion of starch that is rapidly digestible by in vitro hydrolysis (rapidly digestible starch, RDS). This study evaluated the RDS content in a potato germplasm collection consisting of 98 genotypes and identified three advanced lines, Crop39, Crop71 and Crop85, where cooked potato RDS content was significantly lower than that of their respective isolated starches (P < 0.05). In Crop39, Crop71 and Crop85, the properties of their isolated starch did not differ significantly from that of five control lines with higher RDS contents. Cell wall analyses revealed that, compared with other lines tested, Crop39, Crop71 and Crop85 had at least four times the amount of rhamnogalacturonan-I (RG-I) galactan side-chains that were very firmly attached to the wall and requiring 4 M KOH for extraction. Pectin solubilization during cooking was also remarkably low (2-4%) in these three lines compared with other lines tested (7-19%). The findings suggest that possession of higher amounts of RG-I galactan that interact strongly with cellulose may provide a sturdier wall that better resists solubilization during cooking, and effectively impedes access of digestive enzymes for starch hydrolysis in an in vitro model.