Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pancreatology ; 23(7): 777-783, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778935

RESUMEN

OBJECTIVE: There is an unmet clinical need for effective, targeted interventions to prevent post-ERCP pancreatitis (PEP). We previously demonstrated that the serine-threonine phosphatase, calcineurin (Cn) is a critical mediator of PEP and that the FDA-approved calcineurin inhibitors, tacrolimus (Tac) or cyclosporine A, prevented PEP. Our recent observations in preclinical PEP models demonstrating that Cn deletion in both pancreatic and hematopoietic compartments is required for maximal pancreas protection, highlighted the need to target both systemic and pancreas-specific Cn signaling. We hypothesized that rectal administration of Tac would effectively mitigate PEP by ensuring systemic and pancreatic bioavailability of Tac. We have tested the efficacy of rectal Tac in a preclinical PEP model and in cerulein-induced experimental pancreatitis. METHODS: C57BL/6 mice underwent ductal cannulation with saline infusion to simulate pressure-induced PEP or were given seven, hourly, cerulein injections to induce pancreatitis. To test the efficacy of rectal Tac in pancreatitis prevention, a rectal Tac suppository (1 mg/kg) was administered 10 min prior to cannulation or first cerulein injection. Histological and biochemical indicators of pancreatitis were evaluated post-treatment. Pharmacokinetic parameters of Tac in the blood after rectal delivery compared to intravenous and intragastric administration was evaluated. RESULTS: Rectal Tac was effective in reducing pancreatic injury and inflammation in both PEP and cerulein models. Pharmacokinetic studies revealed that the rectal administration of Tac helped achieve optimal blood levels of Tac over an extended time compared to intravenous or intragastric delivery. CONCLUSION: Our results underscore the effectiveness and clinical utility of rectal Tac for PEP prophylaxis.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Pancreatitis , Animales , Ratones , Administración Rectal , Antiinflamatorios no Esteroideos , Ceruletida , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Ratones Endogámicos C57BL , Pancreatitis/etiología , Pancreatitis/prevención & control , Tacrolimus/administración & dosificación , Tacrolimus/uso terapéutico
2.
J Biol Chem ; 294(19): 7864-7877, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30914479

RESUMEN

4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Hialurónico/biosíntesis , Himecromona/análogos & derivados , Linfocitos T Reguladores/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Himecromona/farmacología , Ratones , Linfocitos T Reguladores/patología
3.
bioRxiv ; 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38328123

RESUMEN

With the increasing prevalence of antimicrobial-resistant bacterial infections, there is great interest in using lytic bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of intravenously administered bacteriophage in uninfected mice. A single dose of LPS-5, an antipseudomonal bacteriophage recently used in human clinical trials, was administered intravenously to both wild-type BALB/c and neutropenic ICR mice. Phage concentrations were assessed in peripheral blood and spleen at 0.5, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance is only minimally affected by neutropenia. Indeed, the half-life of phages in blood in BALB/c and ICR mice is 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that substantial functional inactivation of circulating phages occurs over time. These data indicate that circulating factors, but not neutrophils, inactivate intravenously administered phages.

4.
Mol Pharm ; 10(11): 4032-7, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-23980906

RESUMEN

Previous studies have demonstrated that increased gastric pH from the use of acid-reducing agents, such as proton-pump inhibitors or H2-receptor antagonists, can significantly impact the absorption of weakly basic drugs that exhibit pH-dependent solubility. Clinically practical strategies to mitigate this interaction have not been developed. This pilot study evaluated the extent and time course of gastric reacidification after a solid oral dosage form of anhydrous betaine HCl in healthy volunteers with pharmacologically induced hypochlorhydria. Six healthy volunteers with baseline normochlorhydria (fasting gastric pH < 4) were enrolled in this single period study. Hypochlorhydria was induced via 20 mg oral rabeprazole twice daily for four days. On the fifth day, an additional 20 mg dose of oral rabeprazole was given and gastric pH was monitored continuously using the Heidelberg pH capsule. After gastric pH > 4 was confirmed for 15 min, 1500 mg of betaine HCl was given orally with 90 mL of water and gastric pH was continuously monitored for 2 h. Betaine HCl significantly lowered gastric pH by 4.5 (± 0.5) units from 5.2 (± 0.5) to 0.6 (± 0.2) (P < 0.001) during the 30 min interval after administration. The onset of effect of betaine HCl was rapid, with a mean time to pH < 3 of 6.3 (± 4.3) min. The reacidification period was temporary with a gastric pH < 3 and < 4 lasting 73 (± 33) and 77 (± 30) min, respectively. Betaine HCl was well tolerated by all subjects. In healthy volunteers with pharmacologically induced hypochlorhydria, betaine HCl was effective at temporarily lowering gastric pH. The rapid onset and relatively short duration of gastric pH reduction gives betaine HCl the potential to aid the absorption of orally administered weakly basic drugs that exhibit pH-dependent solubility when administered under hypochlorhydric conditions.


Asunto(s)
Aclorhidria/inducido químicamente , Aclorhidria/tratamiento farmacológico , Betaína/uso terapéutico , Inhibidores de la Bomba de Protones/efectos adversos , Rabeprazol/efectos adversos , Adulto , Antiulcerosos/efectos adversos , Femenino , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Masculino , Persona de Mediana Edad
6.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35499083

RESUMEN

BACKGROUNDHyaluronan (HA), an extracellular matrix glycosaminoglycan, has been implicated in the pathophysiology of COVID-19 infection, pulmonary hypertension, pulmonary fibrosis, and other diseases, but is not targeted by any approved drugs. We asked whether hymecromone (4-methylumbelliferone [4-MU]), an oral drug approved in Europe for biliary spasm treatment that also inhibits HA in vitro and in animal models, could be repurposed as an inhibitor of HA synthesis in humans.METHODSWe conducted an open-label, single-center, dose-response study of hymecromone in healthy adults. Subjects received hymecromone at 1200 (n = 8), 2400 (n = 9), or 3600 (n = 9) mg/d divided into 3 doses daily, administered orally for 4 days. We assessed safety and tolerability of hymecromone and analyzed HA, 4-MU, and 4-methylumbelliferyl glucuronide (4-MUG; the main metabolite of 4-MU) concentrations in sputum and serum.RESULTSHymecromone was well tolerated up to doses of 3600 mg/d. Both sputum and serum drug concentrations increased in a dose-dependent manner, indicating that higher doses lead to greater exposures. Across all dose arms combined, we observed a significant decrease in sputum HA from baseline after 4 days of treatment. We also observed a decrease in serum HA. Additionally, higher baseline sputum HA levels were associated with a greater decrease in sputum HA.CONCLUSIONAfter 4 days of exposure to oral hymecromone, healthy human subjects experienced a significant reduction in sputum HA levels, indicating this oral therapy may have potential in pulmonary diseases where HA is implicated in pathogenesis.TRIAL REGISTRATIONClinicalTrials.gov NCT02780752.FUNDINGStanford Medicine Catalyst, Stanford SPARK, Stanford Innovative Medicines Accelerator program, NIH training grants 5T32AI052073-14 and T32HL129970.


Asunto(s)
Ácido Hialurónico , Himecromona , Administración Oral , COVID-19 , Europa (Continente) , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurónico/metabolismo , Himecromona/administración & dosificación , Himecromona/efectos adversos
7.
J Pain ; 8(1): 19-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17113353

RESUMEN

UNLABELLED: In this double-blind, placebo-controlled, crossover study we compared the analgesic effect of a single oral dose of 30-mg dextromethorphan and 30-mg morphine combination (MS/DM) to 30 mg morphine (MS) alone and either placebo or 30 mg dextromethorphan (DM) on cutaneous sensitization induced by heat/capsaicin (topical) sensitization on the forearm and the brief thermal sensitization model on the thigh in 22 healthy volunteers. Outcome measures were areas of secondary hyperalgesia to brush and von Frey hair stimulation in both sensitization models and the painfulness of acute thermal noxious stimulation on the upper arm. Compared with placebo, both MS/DM and morphine had some effect on the secondary hyperalgesia and reduced the painfulness of a noxious thermal stimulus. The analgesic effect of MS/DM was not superior to that of morphine on any outcome measure. These results differ from preclinical studies with animal experimental pain models in which DM markedly potentiated the analgesic effects of opioids, but they are in accordance with recent clinical trials for chronic pain. PERSPECTIVE: Adding dextromethorphan to morphine (1:1 ratio) did not enhance analgesia on measures of experimental cutaneous sensitization and acute noxious thermal stimulation in healthy volunteers. The results differ from preclinical studies but agree with clinical trials. Human experimental models of pain and neuronal sensitization, which are responsive to oral opioids, allow efficient study of opioid combination analgesics and simplify the process for determining the optimal dose and/or dose ratio.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Dextrometorfano/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Morfina/uso terapéutico , Dolor/tratamiento farmacológico , Adulto , Analgésicos Opioides/efectos adversos , Capsaicina , Dextrometorfano/efectos adversos , Método Doble Ciego , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Antebrazo , Calor , Humanos , Hiperalgesia/inducido químicamente , Masculino , Persona de Mediana Edad , Morfina/efectos adversos , Dolor/inducido químicamente , Muslo
8.
Front Immunol ; 6: 123, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852691

RESUMEN

Hyaluronan (HA) is a prominent component of the extracellular matrix at many sites of chronic inflammation, including type 1 diabetes (T1D), multiple sclerosis, and numerous malignancies. Recent publications have demonstrated that when HA synthesis is inhibited using 4-methylumbelliferone (4-MU), beneficial effects are observed in several animal models of these diseases. Notably, 4-MU is an already approved drug in Europe and Asia called "hymecromone" where it is used to treat biliary spasm. However, there is uncertainty regarding how 4-MU treatment provides benefit in these animal models and the potential long-term consequences of HA inhibition. Here, we review what is known about how HA contributes to immune dysregulation and tumor progression. Then, we review what is known about 4-MU and hymecromone in terms of mechanism of action, pharmacokinetics, and safety. Finally, we review recent studies detailing the use of 4-MU to treat animal models of cancer and autoimmunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA