Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Cell ; 33(8): 2538-2561, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34467412

RESUMEN

A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Xanthomonas/genética , Adaptación Fisiológica/genética , Resistencia a la Enfermedad/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma Bacteriano , Genoma de Planta , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Virulencia/genética , Secuenciación Completa del Genoma , Xanthomonas/patogenicidad
2.
Nature ; 557(7703): 43-49, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695866

RESUMEN

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Asunto(s)
Productos Agrícolas/clasificación , Productos Agrícolas/genética , Variación Genética , Genoma de Planta/genética , Oryza/clasificación , Oryza/genética , Asia , Evolución Molecular , Genes de Plantas/genética , Genética de Población , Genómica , Haplotipos , Mutación INDEL/genética , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética
3.
J Integr Plant Biol ; 65(8): 1859-1873, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36988217

RESUMEN

The plant hormone abscisic acid (ABA) is crucial for plant seed germination and abiotic stress tolerance. However, the association between ABA sensitivity and plant abiotic stress tolerance remains largely unknown. In this study, 436 rice accessions were assessed for their sensitivity to ABA during seed germination. The considerable diversity in ABA sensitivity among rice germplasm accessions was primarily reflected by the differentiation between the Xian (indica) and Geng (japonica) subspecies and between the upland-Geng and lowland-Geng ecotypes. The upland-Geng accessions were most sensitive to ABA. Genome-wide association analyses identified four major quantitative trait loci containing 21 candidate genes associated with ABA sensitivity of which a basic helix-loop-helix transcription factor gene, OsbHLH38, was the most important for ABA sensitivity. Comprehensive functional analyses using knockout and overexpression transgenic lines revealed that OsbHLH38 expression was responsive to multiple abiotic stresses. Overexpression of OsbHLH38 increased seedling salt tolerance, while knockout of OsbHLH38 increased sensitivity to salt stress. A salt-responsive transcription factor, OsDREB2A, interacted with OsbHLH38 and was directly regulated by OsbHLH38. Moreover, OsbHLH38 affected rice abiotic stress tolerance by mediating the expression of a large set of transporter genes of phytohormones, transcription factor genes, and many downstream genes with diverse functions, including photosynthesis, redox homeostasis, and abiotic stress responsiveness. These results demonstrated that OsbHLH38 is a key regulator in plant abiotic stress tolerance.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Oryza , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Oryza/genética , Oryza/metabolismo , Tolerancia a la Sal/genética , Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Sequías , Germinación/genética
4.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216209

RESUMEN

N6-methyladenosine (m6A) methylation represents a new layer of the epitranscriptomic regulation of plant development and growth. However, the effects of m6A on rice responses to environmental stimuli remain unclear. In this study, we performed a methylated-RNA immunoprecipitation sequencing analysis and compared the changes in m6A methylation and gene expression in rice under salt stress conditions. Salt stress significantly increased the m6A methylation in the shoots (p value < 0.05). Additionally, 2537 and 2304 differential m6A sites within 2134 and 1997 genes were identified in the shoots and roots, respectively, under salt stress and control conditions. These differential m6A sites were largely regulated in a tissue-specific manner. A unique set of genes encoding transcription factors, antioxidants, and auxin-responsive proteins had increased or decreased m6A methylation levels only in the shoots or roots under salt stress, implying m6A may mediate salt tolerance by regulating transcription, ROS homeostasis, and auxin signaling in a tissue-specific manner. Integrating analyses of m6A modifications and gene expression changes revealed that m6A changes regulate the expression of genes controlling plant growth, stress responses, and ion transport under saline conditions. These findings may help clarify the regulatory effects of m6A modifications on rice salt tolerance.


Asunto(s)
Adenosina/análogos & derivados , Oryza/genética , Estrés Salino/genética , Tolerancia a la Sal/genética , Adenosina/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Metilación , Raíces de Plantas/genética , Factores de Transcripción/genética
5.
PLoS Genet ; 14(8): e1007521, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096145

RESUMEN

A robust (long and thick) root system is characteristic of upland japonica rice adapted to drought conditions. Using deep sequencing and large scale phenotyping data of 795 rice accessions and an integrated strategy combining results from high resolution mapping by GWAS and linkage mapping, comprehensive analyses of genomic, transcriptomic and haplotype data, we identified large numbers of QTLs affecting rice root length and thickness (RL and RT) and shortlisted relatively few candidate genes for many of the identified small-effect QTLs. Forty four and 97 QTL candidate genes for RL and RT were identified, and five of the RL QTL candidates were validated by T-DNA insertional mutation; all have diverse functions and are involved in root development. This work demonstrated a powerful strategy for highly efficient cloning of moderate- and small-effect QTLs that is difficult using the classical map-based cloning approach. Population analyses of the 795 accessions, 202 additional upland landraces, and 446 wild rice accessions based on random SNPs and SNPs within robust loci suggested that there could be much less diversity in robust-root candidate genes among upland japonica accessions than in other ecotypes. Further analysis of nucleotide diversity and allele frequency in the robust loci among different ecotypes and wild rice accessions showed that almost all alleles could be detected in wild rice, and pyramiding of robust-root alleles could be an important genetic characteristic of upland japonica. Given that geographical distribution of upland landraces, we suggest that during domestication of upland japonica, the strongest pyramiding of robust-root alleles makes it a unique ecotype adapted to aerobic conditions.


Asunto(s)
Adaptación Fisiológica/genética , Alelos , Domesticación , Oryza/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , ADN Bacteriano/genética , Ecotipo , Frecuencia de los Genes , Estudios de Asociación Genética , Oryza/fisiología , Filogenia , Raíces de Plantas/genética , Polimorfismo de Nucleótido Simple , Secuenciación del Exoma
6.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502018

RESUMEN

Gibberellin 2-oxidase (GA2ox) plays an important role in the GA catabolic pathway and the molecular function of the OsGA2ox genes in plant abiotic stress tolerance remains largely unknown. In this study, we functionally characterized the rice gibberellin 2-oxidase 8 (OsGA2ox8) gene. The OsGA2ox8 protein was localized in the nucleus, cell membrane, and cytoplasm, and was induced in response to various abiotic stresses and phytohormones. The overexpression of OsGA2ox8 significantly enhanced the osmotic stress tolerance of transgenic rice plants by increasing the number of osmotic regulators and antioxidants. OsGA2ox8 was differentially expressed in the shoots and roots to cope with osmotic stress. The plants overexpressing OsGA2ox8 showed reduced lengths of shoots and roots at the seedling stage, but no difference in plant height at the heading stage was observed, which may be due to the interaction of OsGA2ox8 and OsGA20ox1, implying a complex feedback regulation between GA biosynthesis and metabolism in rice. Importantly, OsGA2ox8 was able to indirectly regulate several genes associated with the anthocyanin and flavonoid biosynthetic pathway and the jasmonic acid (JA) and abscisic acid (ABA) biosynthetic pathway, and overexpression of OsGA2ox8 activated JA signal transduction by inhibiting the expression of jasmonate ZIM domain-containing proteins. These results provide a basis for a future understanding of the networks and respective phenotypic effects associated with OsGA2ox8.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta/genética , Oryza/enzimología , Proteínas de Plantas/genética , Transducción de Señal , Estrés Fisiológico , Ácido Abscísico/metabolismo , Antocianinas/biosíntesis , Vías Biosintéticas , Ciclopentanos/metabolismo , Flavonoides/biosíntesis , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/fisiología , Especificidad de Órganos , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Presión Osmótica , Oxilipinas/metabolismo , Raíces de Plantas , Plantones
7.
Plant Mol Biol ; 102(1-2): 89-107, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31768809

RESUMEN

KEY MESSAGE: OsPUB67, a U-box E3 ubiquitin ligase, may interact with two drought tolerance negative regulators (OsRZFP34 and OsDIS1) and improve drought tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. E3 ubiquitin ligases are major components of the ubiquitination cascade and contribute to the biotic and abiotic stress response in plants. In the present study, we show that a rice drought responsive gene, OsPUB67, encoding the U-box E3 ubiquitin ligase was significantly induced by drought, salt, cold, JA, and ABA, and was expressed in nuclei, cytoplasm, and membrane systems. This distribution of expression suggests a significant role for OsPUB67 in a wide range of biological processes and abiotic stress response. Over-expression of OsPUB67 improved drought stress tolerance by enhancing the reactive oxygen scavenging ability and stomatal closure. Bimolecular fluorescence complementation assays revealed that a few E2s interacted with OsPUB67 with unique functional implications in different cell components. Further evidence showed that several E3 ubiquitin ligases interacted with OsPUB67, especially OsRZFP34 and OsDIS1, which are negative regulators of drought tolerance. This interaction on the stomata implied OsPUB67 might function as a heterodimeric ubiquitination complex in response to drought stress. Comprehensive transcriptome analysis revealed OsPUB67 participated in regulating genes involved in the abiotic stress response and transcriptional regulation in an ABA-dependent manner. Our findings revealed OsPUB67 mediated a multilayered complex drought stress tolerance mechanism.


Asunto(s)
Sequías , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Aclimatación/genética , Aclimatación/fisiología , Secuencia de Aminoácidos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Plantones , Alineación de Secuencia , Análisis de Secuencia de Proteína , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/aislamiento & purificación , Ubiquitinación
8.
Plant Physiol ; 178(1): 451-467, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30068540

RESUMEN

Improving the performance of rice (Oryza sativa) under drought stress has the potential to significantly affect rice productivity. Here, we report that the ERF family transcription factor OsLG3 positively regulates drought tolerance in rice. In our previous work, we found that OsLG3 has a positive effect on rice grain length without affecting grain quality. In this study, we found that OsLG3 was more strongly expressed in upland rice than in lowland rice under drought stress conditions. By performing candidate gene association analysis, we found that natural variation in the promoter of OsLG3 is associated with tolerance to osmotic stress in germinating rice seeds. Overexpression of OsLG3 significantly improved the tolerance of rice plants to simulated drought, whereas suppression of OsLG3 resulted in greater susceptibility. Phylogenetic analysis indicated that the tolerant allele of OsLG3 may improve drought tolerance in cultivated japonica rice. Introgression lines and complementation transgenic lines containing the elite allele of OsLG3IRAT109 showed increased drought tolerance, demonstrating that natural variation in OsLG3 contributes to drought tolerance in rice. Further investigation suggested that OsLG3 plays a positive role in drought stress tolerance in rice by inducing reactive oxygen species scavenging. Collectively, our findings reveal that natural variation in OsLG3 contributes to rice drought tolerance and that the elite allele of OsLG3 is a promising genetic resource for the development of drought-tolerant rice varieties.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Variación Genética , Oryza/genética , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Alelos , Regulación de la Expresión Génica de las Plantas , Genotipo , Oryza/metabolismo , Presión Osmótica , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico
9.
J Exp Bot ; 67(1): 405-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26512058

RESUMEN

To understand the physiological and molecular mechanisms underlying seedling salt tolerance in rice (Oryza sativa L.), the phenotypic, metabolic, and transcriptome responses of two related rice genotypes, IR64 and PL177, with contrasting salt tolerance were characterized under salt stress and salt+abscisic acid (ABA) conditions. PL177 showed significantly less salt damage, lower Na(+)/K(+) ratios in shoots, and Na(+) translocation from roots to shoots, attributed largely to better salt exclusion from its roots and salt compartmentation of its shoots. Exogenous ABA was able to enhance the salt tolerance of IR64 by selectively decreasing accumulation of Na(+) in its roots and increasing K(+) in its shoots. Salt stress induced general and organ-specific increases of many primary metabolites in both rice genotypes, with strong accumulation of several sugars plus proline in shoots and allantoin in roots. This was due primarily to ABA-mediated repression of genes for degradation of these metabolites under salt. In PL177, salt specifically up-regulated genes involved in several pathways underlying salt tolerance, including ABA-mediated cellular lipid and fatty acid metabolic processes and cytoplasmic transport, sequestration by vacuoles, detoxification and cell-wall remodeling in shoots, and oxidation-reduction reactions in roots. Combined genetic and transcriptomic evidence shortlisted relatively few candidate genes for improved salt tolerance in PL177.


Asunto(s)
Ácido Abscísico/metabolismo , Metaboloma , Oryza/fisiología , Tolerancia a la Sal , Cloruro de Sodio/farmacología , Transcriptoma , Genotipo , Oryza/efectos de los fármacos , Oryza/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología
10.
Biochem Biophys Res Commun ; 465(4): 790-6, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26319557

RESUMEN

DNA methylation, which is one of the best understood epigenetic phenomena, plays an important role in plant responses to environmental stimuli. The rice introgression line IL177-103 and its recurrent parent IR64, which show contrasting salt stress tolerance, were used to characterize DNA methylation changes under salt stress and subsequent recovery using methylation-sensitive amplified polymorphism (MSAP) analysis. The introgression line IL177-103 showed significantly improved tolerance to salinity, as represented by higher relative water content, endogenous abscisic acid content, activity of reactive oxygen species scavenging enzymes, and lower Na(+) concentration in shoots, compared with IR64. The MSAP results showed that less than 10.5% of detected DNA methylation sites were genotype specific, in line with their similar genetic background. Salt-induced DNA methylation changes in both genotypes were mostly detected in roots, and the major portion of the salt-induced DNA demethylation/methylation alterations remained even after recovery, implying their inheritance in the present generation. Furthermore, a few sites with stable DNA methylation differences were identified between salt-tolerant IL177-103 and salt-sensitive IR64, thus providing genotype-specific epigenetic markers. Collectively, these results provide valuable data for further dissection of the molecular mechanisms of salt-stress response and tolerance in rice.


Asunto(s)
Metilación de ADN/genética , Oryza/genética , Oryza/metabolismo , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , ADN de Plantas/genética , ADN de Plantas/metabolismo , Epigénesis Genética , Marcadores Genéticos , Genotipo , Técnicas de Amplificación de Ácido Nucleico , Oryza/clasificación , Fenotipo , Salinidad , Especificidad de la Especie , Estrés Fisiológico
12.
BMC Genomics ; 15: 1026, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25428615

RESUMEN

BACKGROUND: Rice (Oryza sativa. L) is more sensitive to drought stress than other cereals, and large genotypic variation in drought tolerance (DT) exists within the cultivated rice gene pool and its wild relatives. Selective introgression of DT donor segments into a drought-sensitive (DS) elite recurrent parent by backcrossing is an effective way to improve drought stress tolerance in rice. To dissect the molecular mechanisms underlying DT in rice, deep transcriptome sequencing was used to investigate transcriptome differences among a DT introgression line H471, the DT donor P28, and the drought-sensitive, recurrent parent HHZ under drought stress. RESULTS: The results revealed constitutively differential gene expression before stress and distinct global transcriptome reprogramming among the three genotypes under a time series of drought stress, consistent with their different genotypes and DT phenotypes. A set of genes with higher basal expression in both H471 and P28 compared with HHZ were functionally enriched in oxidoreductase and lyase activities, implying their positive role in intrinsic DT. Gene Ontology analysis indicated that common up-regulated genes in all three genotypes under mild drought stress were enriched in signaling transduction and transcription regulation. Meanwhile, diverse functional categories were characterized for the commonly drought-induced genes in response to severe drought stress. Further comparative transcriptome analysis between H471 and HHZ under drought stress found that introgression caused wide-range gene expression changes; most of the differentially expressed genes (DEGs) in H471 relative to HHZ under drought were beyond the identified introgressed regions, implying that introgression resulted in novel changes in expression. Co-expression analysis of these DEGs represented a complex regulatory network, including the jasmonic acid and gibberellin pathway, involved in drought stress tolerance in H471. CONCLUSIONS: Comprehensive gene expression profiles revealed that genotype-specific drought induced genes and genes with higher expression in the DT genotype under normal and drought conditions contribute jointly to DT improvement. The molecular genetic pathways of drought stress tolerance uncovered in this study, as well as the DEGs co-localized with DT-related QTLs and introgressed intervals, will serve as useful resources for further functional dissection of the molecular mechanisms of drought stress response in rice.


Asunto(s)
Sequías , Perfilación de la Expresión Génica , Oryza/genética , Estrés Fisiológico , Transcriptoma , Adaptación Biológica/genética , Mapeo Cromosómico , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Recombinación Genética , Transducción de Señal
13.
Plant Mol Biol ; 84(3): 315-27, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24104862

RESUMEN

Transcriptomic data for Sorghum propinquum, the wild-type sorghum, are limited in public databases. S. propinquum has a subterranean rhizome and transcriptome data will help in understanding the molecular mechanisms underlying rhizome formation. We sequenced the transcriptome of S. propinquum aerial-shoot and rhizome using an Illumina platform. More than 70 % of the genes in the S. propinquum genome were expressed in aerial-shoot and rhizome. The expression patterns of 1963 and 599 genes, including transcription factors, were specific or enriched in aerial-shoot and rhizome respectively, indicating their possible roles in physiological processes in these tissues. Comparative analysis revealed several cis-elements, ACGT box, GCCAC, GATC and TGACG box, which showed significantly higher abundance in aerial-shoot-specific genes. In rhizome-specific genes MYB and ROOTMOTIFTAPOX1 motifs, and 10 promoter and cytokinin-responsive elements were highly enriched. Of the S. propinquum genes, 27.9 % were identified as alternatively spliced and about 60 % of the alternative splicing (AS) events were tissue-specific, suggesting that AS played a crucial role in determining tissue-specific cellular function. The transcriptome data, especially the co-localized rhizome-enriched expressed transcripts that mapped to the publicly available rhizome-related quantitative trait loci, will contribute to gene discovery in S. propinquum and to functional studies of the sorghum genome. Deep transcriptome sequencing revealed a clear difference in the expression patterns of genes between aerial-shoot and rhizome in S. propinquum. This data set provides essential information for future studies into the molecular genetic mechanisms involved in rhizome formation.


Asunto(s)
Genes de Plantas , Componentes Aéreos de las Plantas/metabolismo , Rizoma/metabolismo , Sorghum/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , ARN de Planta/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Rice (N Y) ; 17(1): 37, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819744

RESUMEN

BACKGROUND: Rice is one of the most important food crops in the world, and with the development of direct seeding methods for rice, exposure to anaerobic stress has become a major factor limiting its growth. RESULTS: In this experiment, we tested the tolerance to anaerobic germination of rice varieties NIP and HD84, and they were used as parents to construct a DH (doubled-haploid) population. The transcriptomes of NIP (highly tolerant) and HD86 (intolerant), and their progeny HR (highly tolerant) and NHR (intolerant) were sequenced from normal and anaerobic environments. The differentially-expressed genes (DEGs) were subjected to GO (Gene ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes), and WGCNA analyses. QTL mapping of the DH population identified tolerance to anaerobic germination-related chromosomal segments. The transcriptome results from 24 samples were combined with the anaerobic stress QTL results for 159 DH population lines to construct a metabolic network to identify key pathways and a gene interaction network to study the key genes. Essential genes were initially subjected to rigorous functional validation, followed by a comprehensive analysis aimed at elucidating their potential utility in domestication and breeding practices, particularly focusing on the exploitation of dominant haplotypes. CONCLUSION: The results show that pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) are the starting signals of energy metabolism for coleoptile length growth, the auxin transporter EXPA is the determining signal for coleoptile length growth. The pivotal genes Os05g0498700 and Os01g0866100 exert a negative regulatory influence on coleoptile length, ultimately enhancing tolerance to anaerobic germination in rice. Analyses of breeding potential underscore the additional value of Os05g0498700-hyp2 and Os01g0866100-hyp2, highlighting their potential utility in further improving rice through breeding programs. The results of our study will provide a theoretical basis for breeding anaerobic-tolerant rice varieties.

15.
Theor Appl Genet ; 126(4): 1011-24, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23400830

RESUMEN

The Green Revolution (GR-I) included worldwide adoption of semi-dwarf rice cultivars (SRCs) with mutant alleles at GA20ox2 or SD1 encoding gibberellin 20-oxidase. Two series of experiments were conducted to characterize the pleiotropic effects of SD1 and its relationships with large numbers of QTLs affecting rice growth, development and productivity. The pleiotropic effects of SD1 in the IR64 genetic background for increased height, root length/mass and grain weight, and for reduced spikelet fertility and delayed heading were first demonstrated using large populations derived from near isogenic IR64 lines of SD1. In the second set of experiments, QTLs controlling nine growth and yield traits were characterized using a new molecular quantitative genetics model and the phenotypic data of the well-known IR64/Azucena DH population evaluated across 11 environments, which revealed three genetic systems: the SD1-mediated, SD1-repressed and SD1-independent pathways that control rice growth, development and productivity. The SD1-mediated system comprised 43 functional genetic units (FGUs) controlled by GA. The SD1-repressed system was the alternative one comprising 38 FGUs that were only expressed in the mutant sd1 backgrounds. The SD1-independent one comprised 64 FGUs that were independent of SD1. GR-I resulted from the overall differences between the former two systems in the three aspects: (1) trait/environment-specific contributions; (2) distribution of favorable alleles for increased productivity in the parents; and (3) different responses to (fertilizer) inputs. Our results suggest that at 71.4 % of the detected loci, a QTL resulted from the difference between a functional allele and a loss-of-function mutant, whereas at the remaining 28.6 % of loci, from two functional alleles with differentiated effects. Our results suggest two general strategies to achieve GR-II (1) by further exploiting the genetic potential of the SD1-repressed and SD1-independent pathways and (2) by restoring the SD1-mediated pathways, or 'back to the nature' to fully exploit the genetic diversity of those loci in the SD1-mediated pathways which are virtually inaccessible to most rice-breeding programs worldwide that are exclusively based on sd1.


Asunto(s)
Agricultura/métodos , Ambiente , Pleiotropía Genética/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Fenotipo , Sitios de Carácter Cuantitativo/genética , Agricultura/historia , Análisis de Varianza , Cruzamiento/métodos , Mapeo Cromosómico , Genotipo , Historia del Siglo XX , Modelos Lineales , Oxigenasas de Función Mixta/genética , Modelos Genéticos
16.
Front Plant Sci ; 14: 1134450, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180379

RESUMEN

Introduction: Drought and submergence are contrasting abiotic stresses that often occur in the same rice crop season and cause complete crop failure in many rain-fed lowland areas of Asia. Methods: To develop rice varieties with good tolerances to drought and submergence, 260 introgression lines (ILs) selected for drought tolerance (DT) from nine BC2 populations were screened for submergence tolerance (ST), resulting in 124 ILs with significantly improved ST. Results: Genetic characterization of the 260 ILs with DNA markers identified 59 DT quantitative trait loci (QTLs) and 68 ST QTLs with an average 55% of the identified QTLs associated with both DT and ST. Approximately 50% of the DT QTLs showed 'epigenetic' segregation with very high donor introgression and/or loss of heterozygosity (LOH). Detailed comparison of the ST QTLs identified in ILs selected only for ST with ST QTLs detected in the DT-ST selected ILs of the same populations revealed three groups of QTLs underlying the relationship between DT and ST in rice: a) QTLs with pleiotropic effects on both DT and ST; b) QTLs with opposite effects on DT and ST; and c) QTLs with independent effects on DT and ST. Combined evidence identified most likely candidate genes for eight major QTLs affecting both DT and ST. Moreover, group b QTLs were involved in the Sub1regulated pathway that were negatively associated with most group aQTLs. Discussion: These results were consistent with the current knowledge that DT and ST in rice are controlled by complex cross-talks between or among different phytohormone-mediated signaling pathways. Again, the results demonstrated that the strategy of selective introgression was powerful and efficient for simultaneous improvement and genetic dissection of multiple complex traits, including DT and ST.

17.
BMC Genomics ; 13: 461, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22953761

RESUMEN

BACKGROUND: Rice in tropical and sub-tropical areas is often subjected to cold stress at the seedling stage, resulting in poor growth and yield loss. Although japonica rice is generally more cold tolerant (CT) than indica rice, there are several favorable alleles for CT exist in indica that can be used to enhance CT in rice with a japonica background. Genome-wide gene expression profiling is an efficient way to decipher the molecular genetic mechanisms of CT enhancement and to provide valuable information for CT improvement in rice molecular breeding. In this study, the transcriptome of the CT introgression line (IL) K354 and its recurrent parent C418 under cold stress were comparatively analyzed to explore the possible CT enhancement mechanisms of K354. RESULTS: A total of 3184 differentially expressed genes (DEGs), including 195 transcription factors, were identified in both lines under cold stress. About half of these DEGs were commonly regulated and involved in major cold responsive pathways associated with OsDREB1 and OsMyb4 regulons. K354-specific cold-induced genes were functionally related to stimulus response, cellular cell wall organization, and microtubule-based movement processes that may contribute to increase CT. A set of genes encoding membrane fluidity and defensive proteins were highly enriched only in K354, suggesting that they contribute to the inherent CT of K354. Candidate gene prediction based on introgressed regions in K354 revealed genotype-dependent CT enhancement mechanisms, associated with Sir2, OsFAD7, OsWAK112d, and programmed cell death (PCD) related genes, present in CT IL K354 but absent in its recurrent parent C418. In K354, a number of DEGs were co-localized onto introgressed segments associated with CT QTLs, providing a basis for gene cloning and elucidation of molecular mechanisms responsible for CT in rice. CONCLUSIONS: Genome-wide gene expression analysis revealed that genotype-specific cold induced genes and genes with higher basal expression in the CT genotype contribute jointly to CT improvement. The molecular genetic pathways of cold stress tolerance uncovered in this study, as well as the DEGs co-localized with CT-related QTLs, will serve as useful resources for further functional dissection of the molecular mechanisms of cold stress response in rice.


Asunto(s)
Alelos , Frío , Perfilación de la Expresión Génica , Genómica , Oryza/genética , Oryza/fisiología , Plantones/fisiología , Genoma de Planta/genética , Genotipo , Hibridación Genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Plantones/genética , Estrés Fisiológico/genética , Factores de Tiempo
18.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36290768

RESUMEN

Allantoin is crucial for plant growth and development as well as adaptations to abiotic stresses, but the underlying molecular mechanisms remain unclear. In this study, we comprehensively analyzed the physiological indices, transcriptomes, and metabolomes of rice seedlings following salt, allantoin, and salt + allantoin treatments. The results revealed that exogenous allantoin positively affects the salt tolerance by increasing the contents of endogenous allantoin with antioxidant activities, increasing the reactive oxygen species (ROS)-scavenging capacity, and maintaining sodium and potassium homeostasis. The transcriptome analysis detected the upregulated expression genes involved in ion transport and redox regulation as well as the downregulated expression of many salt-induced genes related to transcription and post-transcriptional regulation, carbohydrate metabolism, chromosome remodeling, and cell wall organization after the exogenous allantoin treatment of salt-stressed rice seedlings. Thus, allantoin may mitigate the adverse effects of salt stress on plant growth and development. Furthermore, a global metabolite analysis detected the accumulation of metabolites with antioxidant activities and intermediate products of the allantoin biosynthetic pathway in response to exogenous allantoin, implying allantoin enhances rice salt tolerance by inducing ROS scavenging cascades. These results have clarified the transcript-level and metabolic processes underlying the allantoin-mediated salt tolerance of rice.

19.
Front Genet ; 13: 822516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281797

RESUMEN

Multiple stress tolerance at the seed germination stage is crucial for better crop establishment in the direct-seeded rice ecosystem. Therefore, identifying rice genes/quantitative trait loci (QTLs) associated with salinity and anaerobic tolerance at the germination stage is a prerequisite for adaptive breeding. Here, we studied 498 highly diverse rice accessions Xian (Indica) and Geng (Japonica), and six traits that are highly associated with salinity and anaerobic tolerance at germination stage were measured. A high-density 2.8M Single Nucleotide Polymorphisms (SNP) genotype map generated from the 3,000 Rice Genomes Project (3KRGP) was used for mapping through a genome-wide association study. In total, 99 loci harboring 117 QTLs were detected in different populations, 54, 21, and 42 of which were associated with anaerobic, salinity, and combined (anaerobic and salinity) stress tolerance. Nineteen QTLs were close to the reported loci for abiotic stress tolerance, whereas two regions on chromosome 4 (qSGr4a/qCL4c/qRI4d and qAGr4/qSGr4b) and one region on chromosome 10 (qRI10/qCL10/ qSGr10b/qBM10) were associated with anaerobic and salinity related traits. Further haplotype analysis detected 25 promising candidates genes significantly associated with the target traits. Two known genes (OsMT2B and OsTPP7) significantly associated with grain yield and its related traits under saline and anaerobic stress conditions were identified. In this study, we identified the genes involved in auxin efflux (Os09g0491740) and transportation (Os01g0976100), whereas we identified multistress responses gene OsMT2B (Os01g0974200) and a major gene OsTPP7 (Os09g0369400) involved in anaerobic germination and coleoptile elongation on chromosome 9. These promising candidates provide valuable resources for validating potential salt and anaerobic tolerance genes and will facilitate direct-seeded rice breeding for salt and anaerobic tolerance through marker-assisted selection or gene editing.

20.
J Adv Res ; 42: 1-16, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35988902

RESUMEN

INTRODUCTION: Rice, Oryza sativa L. (Os), is one of the oldest domesticated cereals that has also gone through extensive improvement in modern breeding. OBJECTIVES: How rice was domesticated and impacted by modern breeding. METHODS: We performed comprehensive analyses of genomic sequences of 504 accessions of Os and 456 accessions of O. rufipogon/O. nivara (Or). RESULTS: The natural selection on Or before domestication and the natural and artificial selection during domestication together shaped the well-differentiated genomes of two subspecies, geng(j) (japonica) and xian(i) (indica), while breeding has made apparent genomic imprints between landrace and modern varieties of each subspecies, and also between primary modern and advanced modern varieties of xian(i). Selection during domestication and breeding left genome-wide selective signals covering âˆ¼ 22.8 % and âˆ¼ 8.6 % of the Os genome, significantly reduced within-population genomic diversity by âˆ¼ 22 % in xian(i) and âˆ¼ 53 % in geng(j) plus more pronounced subspecific differentiation. Only âˆ¼ 10 % reduction in the total genomic diversity was observed between the Os and Or populations, indicating domestication did not suffer severe genetic bottleneck. CONCLUSION: Our results revealed clear differentiation of the Or accessions into three large populations, two of which correspond to the well-differentiated Os subspecies, geng(j) and xian(i). Improved productivity and common changes in the same suit of adaptive traits in xian(i) and geng(j) during domestication and breeding resulted apparently from compensatory and convergent selections for different genes/alleles acting in the common KEGG terms and/or same gene families, and thus maintaining or even increasing the within population diversity and subspecific differentiation of Os, while more genes/alleles of novel function were selected during domestication than modern breeding. Our results supported the multiple independent domestication of Os in Asia and suggest the more efficient utilization of the rich diversity within Os by exploiting inter-subspecific and among population diversity in future rice improvement.


Asunto(s)
Oryza , Oryza/genética , Domesticación , Productos Agrícolas/genética , Fitomejoramiento , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA